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One goal of the current study is to compare many traditional and newly-

emerged speech enhancement algorithms, using a large database that

contains diverse mixtures of speech and background noise under a broad

range of SNRs. A second goal of this study is to evaluate the performance

of these algorithms for people with hearing impairments. Most previous

studies evaluated speech-enhancement outcomes using metrics

developed for healthy young adults, such as the widely-adopted

perceptual evaluation of speech quality (PESQ). It is not clear whether the

findings using these metrics hold for the hearing-impaired population. The

current study includes evaluations using the hearing-aid speech quality

index (HASQI) (Kates and Arehart, 2014).

Introduction

Speech Enhancement Algorithms

Active Set Newton Algorithm (ASNA) (Virtanen et al., 2013):
It applies the Newton method to update the weights more efficiently than other
NMF approaches. Parameters match those of the original study.

DNN-based ideal ratio mask estimation (D-IRM) (Wang et al., 2014):
This DNN-IRM network has three hidden layers with 1024 units each. The
rectified linear (ReLU) activation function is applied to the hidden layers and a
linear activation function is applied to the output layer. The mean square error
is used as the cost function.

DNN-based complex ideal ratio mask estimation (D-cIRM) (Williamson et al.,
2016):
The cIRM is predicted with a network that has three hidden layers with 1024
units each. All hidden layers use ReLU activation functions. The output layer
uses a linear activation function.

LSTM-based ideal ratio mask estimation (L-IRM) (Weninger et al., 2014):
The network has two LSTM layers with 256 nodes in each layer, followed by a
third sigmoidal layer. Mask approximation (MA) is used as the cost function.

BLSTM-based phase-sensitive mask estimation (BL-PSM) (Erdogan et al., 2015):
The network has two BLSTM layers with 256 nodes in each layer, followed by a
third sigmoidal layer. Phase-sensitive spectrum approximation (PSA) is used as
the cost function.

A Mel-frequency domain implementation is applied for all DNN and RNN-based
methods.

Hearing thresholds (dB HL) of male (M) and female (F) subjects across age groups (Schmiedt 2010):

PESQ (-0.5 to 4.5) evaluation results are averaged across noise types for brevity:

HASQI (0 to 1) evaluation results are averaged across noise types, genders and SNRs for brevity:
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• We investigated the performance of several speech
enhancement algorithms on a diverse speech dataset,
with a particular interest in simulated hearing loss
environments.

• The RNN-based methods result in significantly higher
PESQ and HASQI scores for normal-hearing listeners.

• For hearing-impaired listeners, the BLSTM method
achieves the best performance in all age groups for both
genders.

• We also found that for both DNN- and RNN-based
methods, Mel-frequency domain processing can often
lead to improved PESQ scores, but reduced HASQI
scores.

• Future studies that include subjective evaluations are
warranted to confirm the performance of these
algorithms for normal and hearing-impaired listeners.

Conclusions
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The speech data includes 1440 IEEE utterances, 250
utterances from the Hearing in Noise Test (HINT) corpus
and 2342 utterances from the TIMIT database. 70% of
them are used for the training set and 15% are used for
both the testing and development sets. The clean
utterances are further corrupted by four types of noises at
different levels [-5 dB to 20 dB], including airplane, babble,
dog barking, and train noises.
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