

Distributed Tracking of Maneuvering Target: A Finite-Time Algorithm

Jemin George, jemin.george.civ@mail.mil, CCDC Army Research Laboratory, Adelphi, MD 20783, USA

Problem Formulation

- Sensor network as an undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ of order n
 - Stationary sensors located at positions, $\mathbf{s}_i \in \mathbb{R}^2$
- Target position $p(t) \in \mathbb{R}^2$ $\dot{\boldsymbol{p}}(t) = \mathbf{v}(t)$
- Measurements are unit vectors $\varphi_i(t)$

$$oldsymbol{arphi}_i(t) = rac{oldsymbol{p}(t) - oldsymbol{s}_i}{\|oldsymbol{p}(t) - oldsymbol{s}_i\|_2}$$

• Define $\rho_i(t) = \|\boldsymbol{p}(t) - \boldsymbol{s}_i\|_2$ and $\boldsymbol{\varphi}_i(t) =$ $\left[\cos\left(\theta_i(t)\right) \quad \sin\left(\theta_i(t)\right)\right]$ $\rho_i(t)\boldsymbol{\varphi}_i(t) = \boldsymbol{p}(t) - \boldsymbol{s}_i$

Proposition 1 Let $\bar{\varphi}_i(t) \in \mathcal{S}^1$ be an orthonormal vector obtained by rotating $\varphi_i(t)$ by $\pi/2$ radians clockwise. Then

$$ar{oldsymbol{arphi}_i(t)} = \left[-\sin\left(heta_i(t)
ight) \quad \cos\left(heta_i(t)
ight)
ight]^{ op} \ oldsymbol{arphi}_i(t) oldsymbol{arphi}_i^{ op}(t) + ar{oldsymbol{arphi}}_i(t) ar{oldsymbol{arphi}}_i^{ op}(t) = I_2.$$

• Measurements: $\bar{\boldsymbol{\varphi}}_i^{\top}(t)\boldsymbol{s}_i = \bar{\boldsymbol{\varphi}}_i^{\top}(t)\boldsymbol{p}(t)$

$$\mathbf{H}(t) = \begin{bmatrix} \mathbf{h}_1^{\top}(t) \\ \mathbf{h}_2^{\top}(t) \\ \vdots \\ \mathbf{h}_n^{\top}(t) \end{bmatrix}, \quad \mathbf{z}(t) = \begin{bmatrix} z_1(t) \\ z_2(t) \\ \vdots \\ z_n(t) \end{bmatrix}$$

where $\mathbf{h}_i^{\top}(t) = \bar{\boldsymbol{\varphi}}_i^{\top}(t)$ and $z_i(t) =$ $ar{oldsymbol{arphi}}_i^ op(t)oldsymbol{s}_i$

• Measurements for the entire network $\mathbf{z}(t) = \mathbf{H}(t)\mathbf{p}(t).$

Assumption 1 rank $(\mathbf{H}(t)) = 2 < n$.

• Unique solution:

$$\boldsymbol{p}^*(t) = \left(\mathbf{H}^{\top}(t)\mathbf{H}(t)\right)^{-1}\mathbf{H}^{\top}(t)\mathbf{z}(t).$$

Goal: Estimate $p^*(t)$ distributedly via local interactions

Distributed Algorithm

• In terms of local quantities $p^*(t) =$

$$\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{h}_{i}(t)\mathbf{h}_{i}^{\top}(t)\right)^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{h}_{i}(t)z_{i}(t)\right)$$

• Let $\mathbf{P}_i(t) = \mathbf{h}_i(t)\mathbf{h}_i^{\top}(t)$ and $\mathbf{q}_i(t) =$ $z_i(t)\mathbf{h}_i(t)$

$$p^*(t) = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{P}_i(t)\right)^{-1} \frac{1}{n} \sum_{i=1}^n \mathbf{q}_i(t)$$

• Construct a vector $\phi_i(t) \in \mathbb{R}^6$

$$oldsymbol{\phi}_i(t) = egin{bmatrix} ext{vec}\left(\mathbf{P}_i(t)
ight) \ \mathbf{q}_i(t) \end{bmatrix}$$

• Time-varying average

$$\bar{\boldsymbol{\phi}}(t) = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\phi}_i(t) = \frac{1}{n} \left(\mathbf{1}_n^{\top} \otimes I_6 \right) \boldsymbol{\phi}(t)$$

Assumption 2 There exists a positive con $stant \ \gamma > 0 \ such \ that \ \forall i \in \mathcal{I}$

$$\sup_{t\in[t_0,\infty)} \|\dot{\boldsymbol{\phi}}_i(t)\|_{\infty} \le \gamma < \infty$$

Assumption 3 The interaction topology of n networked sensors is given as an unweighted connected undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$.

Lemma 1 For any strongly connected, weightbalanced graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ of order n, the graph $Laplacian \mathcal{L}$ is a positive semi-definite matrix with a single eigenvalue at 0 corresponding to both the left and right eigenvectors $\mathbf{1}_{n}^{+}$ and $\mathbf{1}_{n}$, respectively.

Lemma 2 Let $M \triangleq \left(I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^\top\right)$. For any connected undirected network $\mathcal{G}(\mathcal{V}, \mathcal{E})$ of order n, the graph Laplacian \mathcal{L} and the $incidence\ matrix\ \mathcal{B}\ satisfy$

$$M = \mathcal{L}(\mathcal{L})^{+} = \mathcal{B}\mathcal{B}^{\top} \left(\mathcal{B}\mathcal{B}^{\top}\right)^{+} = \mathcal{B}\left(\mathcal{B}^{\top}\mathcal{B}\right)^{+}\mathcal{B}^{\top},$$

where $(\cdot)^+$ denotes the generalized inverse.

Dynamic average consensus (DAC)

• DAC algorithm

$$\dot{\boldsymbol{w}}_i(t) = -\beta \sum_{j=1}^n a_{ij} \operatorname{sgn} \left\{ \boldsymbol{x}_i(t) - \boldsymbol{x}_j(t) \right\}$$

$$\boldsymbol{x}_i(t) = \boldsymbol{w}_i(t) + \boldsymbol{\phi}_i(t)$$

- $\boldsymbol{w}_i(t) \in \mathbb{R}^6$ is the internal states
- $\boldsymbol{x}_i(t) \in \mathbb{R}^6$ is the estimate of $\bar{\boldsymbol{\phi}}(t)$
- In a compact form

$$\dot{\mathbf{w}}(t) = -\beta \left(\mathcal{B} \otimes I_6 \right) \operatorname{sgn} \left\{ \left(\mathcal{B}^{\top} \otimes I_6 \right) \mathbf{x}(t) \right\}$$
$$\mathbf{x}(t) = \mathbf{w}(t) + \boldsymbol{\phi}(t),$$

• Define

$$\mathbf{w}(t) \in \mathbb{R}^{n6} \triangleq \begin{bmatrix} \mathbf{w}_1^{\top}(t) & \dots & \mathbf{w}_n^{\top}(t) \end{bmatrix}^{\top}$$

 $\tilde{\mathbf{x}}(t) \triangleq \mathbf{x}(t) - \mathbf{1}_n \otimes \bar{\boldsymbol{\phi}}(t)$

• Average-consensus error for the entire network (Lemma 2)

$$\tilde{\mathbf{x}}(t) = \mathbf{w}(t) + (M \otimes I_6) \boldsymbol{\phi}(t)$$

Theorem 1 Given Assumptions 2 and 3, the robust dynamic average-consensus algorithm guarantees that the consensus error, $\tilde{\mathbf{x}}(t)$, is globally finite-time convergent, i.e., $\forall \tilde{\mathbf{x}}(t_0)$, we have $\tilde{\mathbf{x}}(t) = \mathbf{0}$ for all $t \geq t^*$, where $t^* = t_0 + \frac{\|\mathbf{x}(t_0)\|_2}{\lambda_2(L)}$, if $\mathbf{w}(t_0)$ is set to zero and β is selected such that $\beta \geq 1 + \gamma \frac{\sqrt{\hat{n}}}{\hat{\lambda}_2}$, where \hat{n} and $\hat{\lambda}_2$ are $positive\ constants\ such\ that\ \hat{n} \geq n\ and$ $\lambda_2 \leq \lambda_2(L)$, where $\lambda_2(L)$ is the algebraic connectivity of the network.

Theorem 2 Given Assumptions 1, 2, and 3, the proposed approach guarantees that the individual solutions $p_i(t)$ converges to the optimal solution $\mathbf{p}^*(t)$ in finite time, i.e., for all $t \geq t^*$, $p_i(t) = p^*(t)$.

Algorithm 1 Distributed tracking algorithm

Initialization:
$$\mathbf{w}(t_0) = \mathbf{0}_{6n}$$

2: for $t \geq t_0$ do

for
$$i = 1$$
 to n do

4:
$$Obtain: z_i(t) \& \mathbf{h}_i^{\top}(t)$$

$$\mathbf{P}_i(t) = \mathbf{h}_i(t)\mathbf{h}_i^{\top}(t)$$

6:
$$\mathbf{q}_{i}(t) = z_{i}(t)\mathbf{h}_{i}(t)$$
$$\boldsymbol{\phi}_{i}(t) = \begin{bmatrix} \operatorname{vec}(\mathbf{P}_{i}(t)) \\ \mathbf{q}_{i}(t) \end{bmatrix}$$

8:
$$\mathbf{x}_i(t) = \bar{\mathbf{w}}_i(t) + \boldsymbol{\phi}_i(t)$$

 $\dot{\mathbf{w}}_i(t) = -\beta \sum_{j=1}^n a_{ij} \operatorname{sgn} \left\{ \mathbf{x}_i(t) - \mathbf{x}_j(t) \right\}$

10:
$$\mathbf{P}_{\boldsymbol{x}_i}(t) \Leftarrow \left[\boldsymbol{x}_i(t)\right]_{1:4}$$
$$\mathbf{q}_{\boldsymbol{x}_i}(t) \Leftarrow \left[\boldsymbol{x}_i(t)\right]_{5:6}$$

12:
$$\boldsymbol{p}_i(t) = \left(\mathbf{P}_{\boldsymbol{x}_i}(t)\right)^{-1}\mathbf{q}_{\boldsymbol{x}_i}(t)$$
 end for

14: **end for**

Numerical Results

Parameters: $\gamma = 10^2$, $\hat{n} = 5$, and $\hat{\lambda}_2 = 0.4$

Conclusion

- Distributed algorithm to track maneuvering targets from bearing measurements
- Built on the dynamic average consensus algorithm
- Can be easily extended to discrete-time scenarios
- Future research include extension to noisy scenarios and privacy preserving & eventtriggered communication schemes