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Outline

“ Polar code
“ Encoding
“+ Decoding: belief propagation
» Neural network polar decoder
» Motivation and proposed approach
“* Recurrent architecture
% Codebook-based weight quantization
» Simulation results and analysis

» Conclusion
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Polar Code uz

“* Proposed by Arikan in 2009 with provable achievement of Shannon
capacity given binary input discrete memoryless channel (B-DMC)

% Channel polarization
% Matthew effect
“ With recursive implementation, good channels get better and the bad ones

get worse
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Polar Code: Encoding

2 Codelength: N =2"n=1,2,...
» Information length: K
»» Coderate:R =K/N

»» Frozen bits: N — K fixed value of zeros known both by encoder and
decoder
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< Codeword: xV ¥ ¥
< Binary source block: u" = (uy,uy, ..., uy) :
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*

Architecture flexibility
Multi-code rate support
Low cost of implementation

Meet 5G communication protocol and adopted by 3GPP in 2016 for
short codes used in control channel

Other applications: error correction code in flash memory
Decoding algorithm: successive cancelation and belief propagation [3-9]

_ Successive Cancelation (SC) Belief Propagation (BP)
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Performance High Low
Complexity Low High
Latency High Low

Throughput Low High
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Polar Code: Belief Propagation e
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» Message passing algorithm for decoding

» Iterative processing over the factor graph of (N, K) polar code
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% Left-to-right message: Ri(,?' j-th node at the i—th stage

% Right-to-left message: Lgt]) j—th node at the i—th stage

«—— Stage 1 ——+— Stage 2 —+—— Stage 3 —

Unified scaled min-sum
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Multiple Scaled Belief Propagation wo

Input < Hidden layer » Output
% Neural network-based BP: take  'ayer «—lteration1 —  <—IterationT —» layer
advantage of the structure of R RY L7 ~
. - . >
belief propagation decoding ~
% Outperform conventional >
. . . . . >
algorithm within fewer iterations ~
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Proposed Recurrent Architecture with
Codebook-based Weight Quantization

% Multiple scaled min-sum induces additional memory overhead for
weight storage =» hinder the deployment of neural network decoder
“* Massive multiplication on edges results in additional complexity
Input ’« Hidden Iayer;:'Output T
layer |«— Iteration t layer 15 |

1.25 |
R® L® —> 1

1000

SIS
g-bit Quantization

Weight B1 a4 (24}
Recurrent Net. Assign 0 02505075 1 12515 1.75

*» Recurrent architecture = dramatically reduces memory overhead
+» Codebook-based weight quantization =» alleviates complexity

P8




ACCESS IC Graduate Institute of Electronics Engineering, NTU

Recurrent Architecture u

»» Force the network to reuse shared weights among different iteration

“* Recurrent architecture leads to a different optimization problem
+ Dramatically reduce memory overhead with a little performance degradation
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Codebook-based Weight Quantization pz13
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Quantization
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(b)
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(c)
c-bit

Codebook-based
Quantization
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(c=2)

Frequency

—

» Weights are quantized after each epoch during the training process

» Double quantization: reduce both the required number of weights and
the precision for each weights

% Scaling parameters are close to 1 = g-bit quantization with step = 2=@-1
»» Design c-bit codebook by counting the frequency =»reduce g-bit to c-bit
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000 0.00 1
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010 0.50 2 00
011 0.75 3 01
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110
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Simulation Results:
Performance of DNN-BP and RNN-BP

. Polar (64,32)
107 . . .
Parameter Setups :

Encoding Polar (64,32) o
§

SNR 0~5 L
g L

Training codewords/SNR 40000 JSRTRTS WAAEe
= - |---<&--- DNN-BP, iter=3

_ | | —<—RNN-BP, iter=3
Testing codewords/SNR 100800 (g4 | | D> DNN-BP. iter=5

- |—P—RNN-BP, iter=5
[ |-+£x-- DNN-BP, iter=7
t |—#A— RNN-BP, iter=7

Mini-batch size 2400

107 ' ' ' ' ' ' '

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
. : i : : E,/N, (dB)

% Five iteration is enough for convergence

“* RNN-BP has almost the same performance as DNN-BP and reduces
memory overhead by 80%
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Simulation Results:
Performance of BP and RNN-BP

00 Polar (64,32)
Encoding Polar (64,32) 0
§ L
SNR 0~5 < 102
@
Training codewords/SNR 40000 u%’ 107
5 i
Testing codewords/SNR 100800 el B a0
- |—P—BP, iter=20
[ | —A— BP, iter=40
Mini-batch size 2400 | B RNN, iter=5
107 ' ' '

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
E,/N, (dB)

<+ RNN-BP with 5 iteration outperforms conventional BP with 40 iteration
=» Reduce latency and complexity with higher throughput
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Simulation Results:
Performance of Weight Quantization

x107*
[ RNN-BP, iter=5w/ W eight Quantization
= 1.6 | |BP, iter=40
_ L [ |RNN-BP, iter=5
Encoding Polar (64,32) 3 14
@
5 1.2
SNR 5 i
& 1
Quantization bit (q) 2,3,4,5,6 0s
1
Codebook size (c) 1,2,3 2

5

Codebook Size (c) 4

37, 3 R
Quantization Bit (q)

“* When ¢ < 2, longer bit length may result in local minimum

“* When ¢ > 2, longer bit length has lower BER

*»» Codebook size higher than 1 can outperform conventional BP
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Complexity Analysis
e D e

2T NlogN

Conventional BP [7] 30,720
2T NlogN 2T NlogN 64T NlogN
DNN-BP [10] ~3,840 ~3,840 ~122,880

Proposed RNN-BP with
codebook-based weight
guantization

2qT NlogN 2cNlogN
~15,360 ~2,304

*[terations T for BP, DNN-BP, and RNN-BP are set to 40, 5, and 5, respectively. N =64,q=4,c =3

*» DNN-BP dramatically reduces the addition operations at the expense
of significant memory overhead

*» Proposed approach reduces memory overhead by 98% and replaces
multiplication with shift and addition without visible performance loss
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Conclusion

“* Proposed recurrent architecture can learn the shareable parameters
with effective reduction of memory overhead by 80%

“* Proposed codebook-based weight quantization can further reduce
memory overhead by 90% and alleviate hardware complexity

“* Our proposed design is low complexity, low latency and high
throughput; while being feasible for realizing neural network decoders
IN communication systems
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