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Background

 Physical-layer (PHY)  security and multicasting

 PHY security can overcome the inherent 
difficulties of cryptographic methods.
 PHY-multicasting transmits common messages in 
a way that all receivers can decode them.

 Traditionally they are independently investigated.

 PHY service integration

 merging multiple services into one integral service 
for one-time transmission.
 enable coexisting services to share the same 
resources, thereby significantly increasing the 
spectral efficiency.

 Motivation

 Many works focused on PHY service integration 
only from the viewpoint of information theory.
 DMBC (Csiszar et al. ’78)
 MIMO (Ly et al. ’10)
 Bidirectional relay (Wyrembelski et al. ’12)
 Compound BC with uncertainties (Wyrembelski 
et al. ’12)

 How to derive certain transmit design to achieve
the boundary points of the secrecy rate region?

System Model

 A multi-antenna transmitter serves K receivers, and 
each receiver has a single antenna.

 All receivers have ordered the multicast service and 
receiver 1 further ordered the confidential service.

 The received signal at receiver k
yk = hkx + zk

hk-kth receiver's channel response  zk-AWGN
Transmitted components

x = x0 + xc + xa
x0-multicast message, x0~CN(0,Q0)
xc-confidential message, xc~CN(0,Qc)
xa-artificial noise, xa~CN(0,Qa)
 Deterministically bounded CSI error model

Robust Scheme

Worst-case secrecy rate region
Under the above described deterministically bounded 
CSI error model, an achievable worst-case secrecy 
rate region is determined by [Ly et al. ’10]

where

Problem Formulation

This optimization problem also provides us a way to 
determine the boundary points of the secrecy rate 
region, by traversing all possible τ's.

Further simplify (1) by introducing a slack variable β

Since this problem is non-convex and challenging to 
solve directly. To deal with it, we recast it into a two-
stage optimization problem. 

Problem Re-Formulation
The outer-stage part is with regard to (w.r.t.) β

where log γ*(τ')=g*(τ'). The inner-stage part calculates 
η(τ',β) for a fixed β
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 The inner-stage optimization

 By resorting to the S-procedure [1], we can 
recast the above optimization as follows

where

 S-procedure
Let                                         , where  

,          . The implication 
holds if and only if there exists a           such that 

The remaining difficulty in solving (4) lies in its 
objective function, especially the uncertainty 
therein.

[1] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university 
press, 2009..

Numerical Results

Nt=2, K=5

Channel responses

P=20dB

εk=0.2 for all k

 Worst-case secrecy rate regions

 The existence of channel uncertainty dramatically 
diminishes the achievable secrecy rate region

 AN indeed enhances the security performance 
without compromising the QoMS.

 The gap tends to be reduced, which implies that AN 
is prohibitive at high QoMS region.

 Secrecy rate versus #unauthorized receivers

 The worst secrecy rates drops with the number of 
unauthorized receivers.

 Incorporating service integration restrains the 
maximum worst-case secrecy rates

Concluding Remarks

 Considered the optimal robust AN-aided transmit 
design for multiuser MISO broadcast channel with 
confidential service and multicast service .

By resorting to a two-stage reformulation, the 
problem can be handled by solving a sequence of 
fractional SDPs.

AN can effectively fortify the transmission security, 
but high demand for QoMS will confine its use in turn.

 Identification of the quasi-concavity of (4)
Property 1: Let us define

Then f(Qc,Qa) is a quasi-concave function on the 
problem domain of (4), and hence the 
maximization problem (4) is a quasi-concave 
problem.
Proof: We just need to verify the convexity of the 
α-superlevel set of f(Qc,Qa).

By using the S-procedure again, one can easily 
obtain

where

The proof is completed .                                  █

Consequently, the optimization problem (4) can be 
efficiently solved by combining a bisection search [1] 
with a convex optimization solver, e.g., CVX.
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