DEEP PTYCH: SUBSAMPLED FOURIER PTYCHOGRAPHY USING DEEP **GENERATIVE PRIORS**

Fahad Shamshad, Farwa Abbas, and Ali Ahmed Information Technology University, Lahore, Pakistan

Presented by Salman Asif

Abstract

- **Problem**: Faithful recovery of estimate of true signal from subsampled Fourier Ptychography measurements.
- **Novel Solution**: We propose a novel framework to regularize the highly ill-posed Fourier Ptychography problem using Generative Models.
- **Numerics**: We demonstrate experimentally that our proposed algorithm *Deep Ptych* outperforms existing subsampled Fourier Ptychography approaches
- ▷ in terms of quality of reconstruction
- robustness against noise
- **Deep Ptych+**: We further modify the proposed approach to allow the generative model to explore solutions outside the range, leading to improve performance.

Problem Formulation

- ► Aim: Reliable estimation of image from subsampled Fourier ptychography measurements.
- **Observation Model**: Forward acquisition model of subsampled Fourier Ptychography is

$$y_{\ell} = |\mathcal{M}_{\ell}(\mathcal{A}_{\ell}(x))| + n_{\ell}, \text{ for } \ell = 1, ..., L,$$

where $y_{\ell} \in \mathbb{R}^{n}$ is subsampled image corresponding to ℓ^{th} camera, $\mathcal{A}_{\ell}:\mathbb{C}^n\to\mathbb{C}^n$ is the linear operator representing the forward acquisition model, and $n_\ell \in \mathbb{R}^n$ denotes noise perturbation. For ℓ^{th} camera, the linear operator \mathcal{A}_{ℓ} has the form $\mathcal{F}^{-1}\mathcal{P}_{\ell}\circ\mathcal{F}$, where \mathcal{F} denotes 2D Fourier transform, \mathcal{P}_{ℓ} is pupil mask, and \circ represents the Hadamard product.

- We define the subsampling ratio as the fraction of samples retained by \mathcal{M}_{ℓ} divided by the total number of observed samples i.e.
 - Number of samples retained Subsampling Ratio = -

Total observed samples

- **Challenges**: Problem is highly ill-posed due to its non-linear and non-convex nature.
- ► Naive Approaches:

▷ Introduce redundancy into measurement system but it is expensive and time consuming at high resolutions.

Exploit structural assumptions on true signal like sparsity, non-negativity but nature exhibits far richer non-linear structure than sparsity or non-negativity alone [1].

Generative Models

- **Generative Prior**: Learn the structure of class of natural signals like faces or numbers from the training data using Generative Adversarial Networks or Variational Autoencoders.
- In these models, the generative part (G), learns a mapping from low dimensional latent space $z \in \mathbb{R}^k$ to a high dimensional sample space $G(z) \in \mathbb{R}^n$ where $k \ll n$.
- During training, these generative models are encouraged to produce samples that resemble with that of training data \mathcal{X} . A well-trained generator, given by deterministic function $G: \mathbb{R}^k \to \mathbb{R}^n$ with a distribution P_Z over (usually random normal or uniform), is therefore capable of generating fake data indistinguishable from the real data it has been trained on.
- Notably, these generative prior based approaches, have been shown to improve over sparsity-based approaches, thus advancing the state of the art in several image restoration tasks [2].
- **Assumption**: The generator G(.) well approximates the set \mathcal{X} .

Deep Ptych

 \blacktriangleright We aim to solve for \hat{x} , given measurements y, forward operator \mathcal{A} , and subsampling mask \mathcal{M} :

$$\hat{\mathbf{x}} := \underset{\mathbf{x} \in \text{Range}(G)}{\operatorname{argmin}} \sum_{\ell=1}^{L} \|\mathbf{y}_{\ell} - |\mathcal{M}_{\ell}(\mathcal{A}_{\ell}(\mathbf{x}))|\|_{2}^{2},$$

where Range(G) is the set of all the images that can be generated by pretrained G. \blacktriangleright The minimization program in (1) can be equivalently formulated in the latent representation z as follows:

$$\hat{z} = \underset{z \in \mathbb{R}^k}{\operatorname{argmin}} \sum_{\ell=1}^{L} \|y_{\ell} - |\mathcal{M}_{\ell}(\mathcal{A}_{\ell}(G(z)))|\|_2^2.$$

Deep Ptych

Figure: Overview of Fourier ptychography forward model and proposed reconstruction algorithm. A coherent camera array captures an image of the object. The bandlimited signal is then focused to an image plane and a subsampling operator is applied. Subsequently, an optical sensor measures the magnitude while discarding the phase of signal. During the reconstruction phase, the generator (G) optimizes a latent code via gradient descent algorithm to find a corresponding G(z) that best explains the observations.

Deep Ptych+

- Output of Deep Ptych is constrained to lie in the range of generator. ► To address this shortcoming, we allow the reconstructed image to deviate a bit from the range of the generator if it improves the measurement loss.
- ► To achieve this, we propose solving the following modified version of the optimization program in (2) and dubbed this approach as **Deep Ptych**+.

$$(\hat{x}, \hat{z}) = \underset{z \in \mathbb{R}^{k}, x \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{\ell=1}^{L} \|y_{\ell} - |\mathcal{M}_{\ell}(\mathcal{A}_{\ell}(x))|\|_{2}^{2} + \lambda \|x - G(z)\|_{2}^{2}.$$
(3)

- \triangleright First term in the objective favors an image x with smaller measurement loss > Second term ensures that x should not deviate too far away from the range of the pretrained generative network G().
- $\triangleright \lambda$ is free parameter
- ▶ We find that further adding total variation regularization results in improved results, especially in high noise regime. We dubbed this approach as **Deep Ptych + (TV)**.

$$\hat{x}, \hat{z}) = \underset{z \in \mathbb{R}^{k}, x \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{\ell=1}^{L} \|y_{\ell} - |\mathcal{M}_{\ell}(\mathcal{A}_{\ell}(x))|\|_{2}^{2} + \lambda_{1} \|x - G(z)\|_{2}^{2} + \lambda_{2} \|x\|_{\mathrm{tv}}^{2}.$$
(4)

 \triangleright λ_1 and λ_2 are hyperparameters.

Experimental Setup

- ► Generative Models
- ▷ Generative Adversarial Networks
- ▷ Variational Autoencoders
- Datasets
- \triangleright MNIST (Super-resolved to **56** \times **56**)
- \triangleright CelebA (**64** × **64**)
- \triangleright CelebA HQ (**128** \times **128**)
- Baseline Methods
- ▷ Iterative Error Reduction Algorithm (IERA) [2]
- Compressive Phase Retrieval using Alternative Minimization (CoPRAM) [3] Quantitave Measures
- ▷ Peak Signal to Noise Ratio (PSNR)
- Structural Similarity Index Measure (SSIM)
- Adam optimizer with learning rate of 0.05.
- \blacktriangleright Aperture diameter of each camera in 9×9 camera grid is 15 and 16 pixels for MNIST and CelebA, respectively.
- Overlap between cameras is 65%

Subsampling mask for 3×3

(1)

(2)

Numerical Simulations

(f) Original

References

[1] P. Hand and V. Voroninski, "Global guarantees for enforcing deep generative priors by empirical risk minimization" arXiv preprint arXiv:1705.07576, 2017. [2] M. Asim, F. Shamshad, and A. Ahmed, "Blind image deconvolution using deep generative priors." ArXiv eprints, February 2018.

[3] J. Holloway, M.S. Asif, M.K. Sharma, N Matsuda, R Horstmeyer, O Cossairt, and A Veeraraghavan, "Toward long-distance subdiffraction imaging using coherent camera arrays," IEEE Transactions on Computational Imaging, 2016. [4] G. Jagatap, Z. Chen, C. Hegde, and N. Vaswani, "Sub-diffraction imaging using fourier ptychography and structured sparsity," in Proc. IEEE Int. Conf. Acoust., Speech, and Sig. Proc.(ICASSP), 2018.

INFORMATION TECHNOLOGY UNIVERSITY

MNIST			CelebA			
mpling N		oise	Subsampling		Noise	
3%	1%	10%	1%	3%	1%	10%
11.72	14.15	9.59	5.89	7.29	12.36	11.25
19.16	16.63	6.45	13.95	23.85	17.53	9.34
-	27.10	12.26	_	_	26.41	15.81
24.80	25.31	19.27	22.54	22.79	23.57	21.21
39.39	34.83	15.20	27.99	38.72	32.08	14.00
_	35.98	16 82	_	_	33.61	16 46

Subsampling Results (2% subsampling ratio, $\lambda = 0.01$ for Deep Ptych+.)

(g) IERA

(h) CoPRAM

(i) Deep Ptych