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Summary
We present ındings on how representation learning on
large unlabeled speech corpora can be beneıcially utilized
for speech emotion recognition (SER). Evaluation is done
by means of within- and cross-corpus testing.

Main ındings:

• Integrating representations learned by unsupervised au-
toencoder improves emotion classiıcation

• Autoencoder representations bear emotional informa-
tion (especially arousal dimension)

• Consistent improvements for within- and cross-corpus
evaluation

Methods
1 Train time-recurrent sequence-to-sequence autoencoder on

spectrograms from large speech corpus (auDeep toolkit [1])
2 Generate latent representations for emotional speech
3 Train attentive convolutional neural network (ACNN) [2]with

those representations as additional feature vector
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Speech Corpora

• IEMOCAP [3]
5,531 utterances from 10 speakers,
classes {angry, happy, neutral, sad}

• MSP-IMPROV [4] (only for evaluation)
7,798 utterances from 12 speakers, same 4 classes

• Tedlium r2 [5]
207 hours (92,973 utterances)

• Librispeech [6]
100 hours subset (28,539 utterances)

Experimental Results

Baseline

• ACNN without additional representations

• 5-fold cross validation (speaker-independent) for IEMOCAP

Autoencoder (AE) training on 4 datasets
a) ’Control condition’: AE trained on IEMOCAP itself (respec-

tively MSP-IMPROV) – no additional data source

b) ’small Tedlium’: AE trained on subset of Tedlium
(400 Ted talks, 25,303 segments)

c) ’Librispeech’: AE trained on 100 hours Libri-
speech data

d) ’full Tedlium’: AE trained on 207 hours of speech

Unweighted average recall (UAR), averaged over 10 runs of the
experiments for each setting

IEMOCAP MSP-IMPROV
(cross-corpus)

Baseline 58.03 42.99
a) Control 58.07 42.37

b) small Ted 58.85 45.21
c) Librispeech 59.05 44.82
d) full Ted 59.54 45.76

→Consistent improvementswhen adding representations gen-
erated by diĳerent AE models b), c), and d)

Increasing
data

Visualization of Speech
Representations

t-SNE visualizations of last hidden layer of the ACNN for IEMOCAP

t-SNE visualizations of the AE representations for IEMOCAP (AE
trained on full Tedlium, no emotion information involved in training)

• ACNN: angry and sad separated to certain extend;
high-variance cluster for happy

• ACNN: much more discriminative for arousal than for valence

• AE: similar patterns despite no emotion labels are involved

• → AE implicitly learns to separate low and high arousal

• Both representations are invariant to speaker sex and speaker iden-
tity (no separable clusters found in visualizations)
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