

A FORMAT-COMPLIANT SELECTIVE SECRET 3D OBJECT SHARING SCHEME BASED ON SHAMIR'S SCHEME

Sébastien Beugnon^{1,2}, William Puech¹ and Jean-Pierre Pedeboy²
¹ LIRMM, CNRS, Univ. Montpellier, France
² STRATEGIES, Rungis, France
{sebastien.beugnon, william.puech}@lirmm.fr

CNIS

INTRODUCTION

Multimedia security **allows** users to **protect** content from illegal access by **preserving** the **format compliance**.

3D selective encryption allows owners to distribute protected 3D contents as they see fit to transmit to third-parties [1].

The **need** to **share** 3D content in a **secure** manner has arisen in recent **collaborative** and cloud-based environments, such as **3D workflows**.

We propose a selective secret 3D object sharing scheme based on Shamir's Secret Sharing scheme to protect 3D content and share low quality 3D objects as shares.

SECRET SHARING

OVERVIEW OF THE METHOD

M'_0 Original 3D Binary word Binary Binary words M'_1 object Mwords W_i sharing sets $\{B_{i,j}\}$ LSB : Shared 3D Vertex bit selection M'_{n-1} object generation Number of Number of required generated shares kshares n

Degradation level *D* parameters: *p* between 0 and 22, *l* between 1 and (p+1).

EXPERIMENTAL RESULTS

- Reconstruct secret with k users (among the n).

- First scheme in 1979 [2].

- Keyless approach.

- (k, n)- threshold scheme.

- Share a secret among *n* users.

- Secret is defined on finite field.
- Shares can be considered as **2D points**.
- The secret is reconstructed using a polynomial interpolation (Lagrange's interpolation).

zero-bit attack Laplacian smoothing on shared 3D objects

EVALUATION 0.6 HD — RMSE 0.25 0.5 0.20 0.4 **R** 0.15 • 0.3 🖵 S m 0.10 0.2 0.05 0.1 0.00 0.0 20 21 22 19

Mean and standard deviation of the RMSE and the Hausdorff Distance on the Princeton mesh segmentation dataset [3] as a function of the degradation level (D = < p, p+1>).

depending on the degradation level D = <18, 1 > and D = <22, 1 >.

COMPARISON

Comparison of our scheme with previous work.

CONCLUSION

- We proposed a efficient format-compliant selective secret 3D object sharing scheme based on Shamir's scheme. We share a 3D object and *n* low and controllable quality shared 3D objects distributed to users which can reconstruct the secret 3D object perfectly with *k* of them.
- We introduced the **first selective** secret 3D object sharing scheme which **allows** users to define the **level of degradation** assigned to the shared 3D objects before the sharing step.
- Experimental results show the feasibility of our scheme and the robustness against geometric attacks.
- Future work will concentrate on adding new features to our secret 3D object sharing scheme, for example **hierarchical** aspect in order to control the access to 3D content depending on the hierarchy among users in collaborative 3D workflows.

REFERENCES

[1] S. Beugnon, W. Puech and J.-P. Pedeboy, "Format-compliant selective encryption of 3D objects", *2018 IEEE ICME*, 2018.

[2] A. Shamir, "How to share a secret", *Communications of the ACM*, 1979.

[3] X. Chen, A. Golovinskiy and T. Funkhouser, "A benchmark for 3D mesh segmentation", *ACM TOG*, 2009.

[4] E. Elsheh and A. B. Hamza, "Secret sharing approaches for 3D object encryption", *Expert Systems with Applications*, 2011.

[5] L. J. Anbarasi and GS. A. Mala, "Verifiable multi secret sharing scheme for 3D models", *International Arab Journal of I.T., 2015*.

[6] A. Martín del Rey, "A multi-secret sharing scheme for 3D solid objetcs", *Expert Systems with Applications*, 2015.

[7] Y.-Y. Tsai, "A secret 3D model sharing scheme with reversible data hiding based on space subdivision", *3D Research*, 2016.

[8] S.-S. Lee, Y.-J. Huang, and J.-C. Lin, "Protection of 3D models using cross recovery", *Multimedia Tools and Applications*, 2017.