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LTI systems and Hankel matrices



The block-Hankel matrix encodes LTI

Linear time-invariant system
- input up € R™
- output y, € RP

- lag £ (minimal)

AoYr + QY41 + -+ -+ AQeYrte
= boU}g SFeoeSF b[UkJrg,for R <1

The Hankel matrix H, of a sequence x = (X1, ..., Xy)
X1 X2 o XN—L41
X2 X3 - Xn—L42
Hi(x) =

XL Xpgr oo XN



The block-Hankel matrix encodes LTI

Linearity and time-invariance lead to (block-)Hankel structure

I uy Uy - Un—41 1
u, us oo Un—p2
@) — u. Uy - Yy _ Hi(u)
Vi V2o o Ynei HL(y)
Yo Y3 o Yn—ip2
LY. Yiyr - Xn o]
For i/o data from an LTI system with lag ¢
Heyi(u)
by --- b,|— el —a=) || @
’ ‘ ‘ o o } [ Hea(y)

and
rankH (u,y) = mL + p¢ ;3



Low-rank Mosaic Hankel matrix completion

Given is an i/o dataset (u?,y9) of a system

Find the output y° corresponding to a simulation input u®

Given i/o data (u9,y?) and inputs u®
Find y° such that

Hud) | Hw) | H(u9)
rank[ H(yd) H( )]_rank[ Ay ]

Notice that similar data-driven variations are possible, such as
output tracking and Kalman filtering with missing data [7]



Convex relaxations



Nuclear norm for matrix completion

Matrix rank minimization
mmixmize rank X
subjectto Xj = Dy, for (i,j) € Q

This is an NP-hard problem [1, 6]...

minixmize [1X]|
subjectto Xj = Dj;, for (i,)) € Q
with the nuclear norm || X||x = > oi(X)

This is a convex problem, and perfect recovery is possible [1]
(assuming random known/missing element locations)



Nuclear norm for matrix completion

mmixmize [1XI].«
subjectto Xj = Dj, for (i,)) € Q
with the nuclear norm || X||. = >_ 0i(X)

- Introduced around 2002 by Fazel and Boyd [4, 3, 8]
+ Nuclear norm approximation used for system identification [5]
- Related to compressed sensing:

sparsity in matrix singular values spectrum



Mosaic-Hankel matrix completion



Nuclear norm Mosaic-Hankel completion

Given i/o data (u?,y?) and simulation input u®

Find v° from
o H(u9) | H(u®)
mm;{gmze l A% THOY) ]

*



Data-driven impulse response simulation works well

Given a given data sequence (u?, y?) of length Ny = 80 from a
random system (drss) of ordern = 4

Find the response of the system y° to an impulse input u® (N5 = 20)




Data-driven random input simulation often fails

Given a given data sequence (u?, y?) of length Ny = 80 from a
random system (drss) of ordern = 4

Find the response of the system y° to a random input u® (Ns = 20)




- Data-driven signal processing bypasses modeling step
- Impulse simulation works but random simulation often fails

- Minimal nuclear norm does not always impose low rank



Scaling the available data changes the recovery error

Given i/o data (u?,y?) and simulation input u®
Find v* from

minimize
yS

1



Guarantees for perfect recovery




Hankel matrix completion (Usevich-Comon [9])

Consider sum-of-exponentials x, = 27:1 q)\f (“impulse response”)

Given xq,...,Xx
Find
C
X2
H=| x
L XL

X2

X3

XL

X3 XL

XL

Do rank and nuclear norm minimization have the same solution?
Yes, provided stability conditions on poles A; < 12, 9]

Can we develop a similar result for data-driven simulation?



Affine matrix structure

The Hankel matrix #(y) has an affine matrix structure

[ e ]
H”‘[w(yd) HO) ] 5”2 .

Specifically, we have

s _ | Huluo) | Hu(u)
0 =
_HL(Yd) 0 i
0 0
S =
0| H (01N (1,0, ,0))
s _ |o 0 ]
L 0 HL(OL—W A (07 coog 071))

(prepending with zeros for initial state)



Guarantees for successful recovery

Lemma (Gillard and Usevich, 2018)
Let y* € RNs and the compact SVD of H(v*) be given by

H(y")=UZV'.

Further, letP=1—UUT, Q=1—WT, and B=UVT.

Then the following statements hold
is a global optimizer if M with ||M|, < 2, and
(PMQ +B,S;,) =0, YR=1,...,Ns.
- If M|, < 1, then y* is the unique minimizer

Existence of the matrix M is a certificate for optimality

14



Conditions for optimality

Verifying if minimal rank solution y* minimizes the nuclear norm?

Corollary (Optimality certificate)
Let M,;, be obtained from

minlwmize M|
subjectto  ST(Q(v) ® P(7)) vec(M) = ST vec(B)
N———— N——
A7) b(v)

Then y* minimizes the nuclear norm iff [M,ipll2 < 1.
If, in addition, M, ll2 <1, then it is the unique solution.

Here P(~) and Q(v) are as in lemma, with vectorized constraints
(PMQ + B, Sp,) = 0 with S = [ vec(S)) - vec(Sw.) }



Conditions for optimality

It is difficult to minimize the two-norm, but we can solve the least
squares problem (we have |[M||, < ||M||f), see [9, 8]

Corollary (Least-squares optimality certificate)
Let M* be the minimizer of

minlwmize IM||F = /vec(M)T vec(M)
subjectto  ST(Q(v) ® P(v)) vec(M) = ST vec(B) (1)
—_— ——
A7) b(v)

If |IM*||2 < 1, then y* is the solution of the nuclear norm
minimization.



Conclusion




Summ

- Data-driven simulation bypasses explicitly building model
- Leverage low-rank properties via Hankel matrix

- Convex relaxation via nuclear norm minimization

- Scale available data set [R1]

- Guarantees for perfect recovery [R2]

[R1] P.D. and I. Markovsky. “Data-driven simulation using the nuclear norm
heuristic”. Proc International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2019), Brighton, UK, 2079.

[R2] P.D. and I. Markovsky and K. Usevich. “Data-driven simulation using nuclear
norm matrix completion: guarantees for successful recovery”, submitted to
Workshop on Low-Rank Models and Applications (LRMA19), Mons, Belgium, 2019.
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