

CYCLE-CONSISTENT ADVERSARIAL NETWORKS FOR NON-PARALLEL VOCAL EFFORT BASED SPEAKING STYLE CONVERSION

Goal of the study

- Speaking style conversion (SSC) [1] is the technology of converting natural speech signals from one style to another.
- This study focuses on SSC for speech with varying vocal effort, focused on conversion between normal and Lombard • We use CycleGANs [2] as a mapping model with PML vocoder
- features.
- The CycleGAN was compared in subjective listening tests with 2 other standard mapping methods used in conversion.

Parametric SSC system

- Frame level features extracted from source signal using PML vocoder [3]: fundamental frequency, binary noise mask and spectral envelope.
- Duration modification based on characteristic voiced and unvoiced durations in each style.
- Features relevant for transformation between normal and Lombard speaking styles are transformed using a machine learning mapping model
- Mapped features are converted to a speech waveform in the target style with the PML vocoder.

CycleGAN to laver *n*+1 D_X Dy Xid **4**·····

Mapping functions G and F, and discriminators D_X and D_Y . The forward cycle, backward cycle, and identity mapping indicated with red, blue, and green respectively.

Block diagram of layer n of the CNN used to model G, F, D_X and D_Y .

- A CycleGAN [2] is a non-parallel learning scheme that learns bidirectional deterministic mappings.
- Trained using adversarial learning generative models trained as a solution to a minmax two-player game between two neural networks called as the generator and discriminator.
- We use Wasserstein distance metric (WGAN loss) with gradient penalty, along with an identity mapping loss.
- The CNN shown has 8 layers and 256 channels with 11-point convolutions (similar to [4]).

Shreyas Seshadri¹, Lauri Juvela¹, Junichi Yamagishi^{2,3}, Okko Räsänen^{1,4} and Paavo Alku¹ ¹Department of Signal Processing and Acoustics, Aalto University, Finland, ²Digital Content and Media Sciences Research Division, National Institute of Informatics, Japan ³The Centre for Speech Technology Research, University of Edinburgh, United Kingdom, ⁴Unit of Computing Sciences, Tampere University, Finland

Data

- Read and conversational speech recor speakers (10 female), in normal and Lor
- <u>*Read*</u> each speaker read a text of 90 wo <u>Conversational</u> - realistic telephone
- subjects played the role of either a call approximately the same as the read sec
- In order to elicit Lombard speech, bac to the speakers' ears with headphone recorded.

Compared Mapping Methods

Parallel GMM

- A standard GMM is used with 8 compo
- DTW aligned features used to train fram

INCA

- Non-parallel learning scheme [6] that neighbor feature pairs between the so iteratively updating the conversion improve matching to the target style.
- Same 8-component GMM model as in
- Algorithm is run for 10 iterations.

Subjective Evaluation

Lombardness of mapped speech

- Setup as a MUSHRA-like (MUltip Reference and Anchor) test.
- Aim: evaluate the Lombardness of the normal-to-Lombard and Lombard-to-r
- Listeners rated Lombardness of mapp based on known reference samples in

Quality of mapped speech

- Comparison category rating (CCR) test
- Listeners were presented with pairs asked to rate the perceived quality comparison to the first one using a co 3, much worse to 3, much better.
- Each utterance pair consisted of a corresponding natural Lombard uttera
- Ratings converted to CMOS scores (sm

	Results
rdings [5] from 20 Finnish mbard styles. ords (~ 1 minute). conversations, where the ler or a travel agent. Size is etion. ckground noise was played es while they were being	Lombardness Test Quality Test
iteratively looks for nearest ource and target while also model to progressively the parallel training. ple Stimuli with Hidden mapped utterances for the normal mappings. oed samples on a scale o–100 normal and Lombard style.	 Conclusions This work studied the use of task of vocal effort speaking normal and Lombard speed CycleGAN produces encours methods, producing the I Lombard conversion while the INCA- based approach. In Lombard-to-normal conspeech quality to the other CycleGANs seems like a prast they appear to provide training on problems whechallenge. The implementation of https://github.com/shreyas2
t. s of speech utterances and of the second utterance in ontinuous rating scale from - mapped utterance and its ance. haller is better).	 Seshadri, L. Juvela, O. Räsänen, and P. Alku, "Voc parallel learning," IEEE Access, vol. 7, pp. 17 230 r. JY. Zhu, T. Park, P. Isola, and A. A. Efros, "Un networks," <i>Proc. ICCV 2017</i>, pp. 2223 2232, 2017. G. Degottex, P. Lanchantin, and M. Gales, "A log <i>Transactions on Audio, Speech, and Language Processe</i> T. Kaneko and H. Kameoka, "CycleGAN-VC: networks," <i>Proc. EUSIPCO 2018</i>, 2018. E. Jokinen, U. Remes, and P. Alku, ,"The use of rea intelligibility enhancement in near-end noise cond 6. D. Erro, A. Moreno, and A. Bonafonte, "INCA corpora." <i>IEEE Transactions on Audio Speech and L</i>

use of non-parallel learning schemes to the king style conversion, in this case between peech.

couraging results compared to the baseline he largest Lombard effect in normal-towhile having indistinguishable quality from

conversion, CycleGAN achieves superior her methods.

a promising candidate for SSC problems, vide a strong alternative for non-parallel where parallel data scarcity is a real

the CycleGAN is available on yas253/CycleGAN_idCNN/

u, "Vocal effort based speaking style conversion using vocoder features and 230 17 246, 2019. s, "Unpaired image-to-image translation using cycle-consistent adversarial "A log domain pulse model for parametric speech synthesis," IEEE/ACM *Processing*, vol. 26, no. 1, pp. 57–70, Jan. 2018. N-VC: Non-parallel voice conversion using cycle-consistent adversarial

e of read versus conversational Lombard speech in spectral tilt modeling for se conditions," in *Proc. Interspeech*, San Francisco, Sep. 2016, pp. 2771–2775. 'INCA algorithm for training voice conversion systems from nonparallel , and Language Processing, vol. 18, no. 5, pp. 944–953, 2010.