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. Introduction A /3. Efficient data transfer | | h
Overlap CPU to GPU data transfer with Fourier transtorms for

* Motivation: real data are often modeled as low-rank tensors. multi-input tensor operations sch as t-product. Overlap GPU to
However, tensor operations are compute-intensive. The running CPU data transfer with inverse Fourier transforms for multi-output
time and complexity grow rapidly with tensor order and size. tensor operations such as t-SVD.

* Our method: design, implement and optimize a set of common | | 4. Uniform memory access
tensor operations on GPUs based on the the transform-based low- cuTenor-tubal designs four memory access operators: tube-
tubal-rank tensor model. strided-fetch, tube-strided-store, slice-fetch, slice-store.

* Key challenges: parallelization schemes, data transfer, memory 5. Two parallelization schemes
access, hardware utilization.

, | | The batched scheme for synchronous execution versus the
* Result: a high-performance “cuTensor-tubal” GPU library with

streamed scheme for asynchronous execution.

four tensor operations: t-FFT, inverse t-FFT, t-product, t-SVD. [ Kemel, el
T GPU-iffi(tubel 0], ... ,tube[mn-l])J iFFT- ‘ GPU-ifft(tube[0]. ... , tube[mn-1]) }
Low-tubal-rank Tensor Model | — B =
emely 0 Caimy_j
, , Matrix | || Matrix Kernel, Kernel,
The low-tubal-rank tensor model 1s defined on the tensor computation | GPU-mop(slice]). ... slcelk1]) | computation | GPU-mop(slicef0]) [GPU-mop(slice[k-l])
Singular Value Decomposition (t-SVD). The model defines a set of I > N I > S
tensor operations including tensor transpose, FFT, product, and FET- [GPU—fft(tube[O], ,mbe[mn-u)} FET | GPU-ffi(tube([0]. ... . tube[mn-1]) }
SVD (as the following figure). :
( g g u) 5 GPU [SMMO‘ [SMMl‘ | SMMy GPU| SMM, | | SMMlJ | SMMQJ
- DM SMM, |
2 [y (a) Batched scheme. (b) Streamed scheme.

6. Exploit conjugate symmetry to save computation
Compute for half the slices and get the rest slices by:

m n / """"" r n A0 — conjugate(j(k—£+2)), £ — ["’”’ﬂ 1, ...,k
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_ : We evaluate the performance of cuTensor-tubal on a Tesla V100
The culensor tubal lerary GPU versus dual Intel Xeon E5-2640 V4 CPUs. The GPU t-
1. Overview of the library product and t-SVD achieve up to 16.91X and 27.03X speedups
The cuTensor-tubal library 1s designed based on the GPU versus that runs on two CPUs, respectively.
hardware, CUDA, and third-party libraries such as MAGMA. o J[ o= oo ime Gorow B oo opiinized Goize] F
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Tensor size: n x n x k, k=128 or 256, varving n
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2. Compute tensor operations in the frequency
domain

Running time (seconds)

pre—— s s e
1) converting the input tensor into the frequency domain by i ‘ ' ?E
performing Fourier transform along the third-dimension (tube-wise --= okl ol ol b bl 0 0 1 1 0 X
DFT), called the t-FFT, - Tfnirgaigze:g ngxgn f 1~:§ 1%21%8 %}rgzﬁé; Eva%}f:%lg%k -
2) performing multiple independent (complex) matrix operations Fig. 2 Running time and speedups of t-SVD.
that possess strong parallelism; cuTensor-tubal has been extended to support more tensor
3) converting the frequency domain results back to the time operations including: t-QR, t-inverse, t-normalization.
domain, called the mverse t-FFT. Code available at: www.tensorlet.com
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