Minimum-volume Rank-deficient Nonnegative matrix factorizations

Valentin Leplat, Andersen M. S. Ang and Nicolas Gillis University of Mons, Rue de Houdain 9, 7000 Mons, Belgium
$\{$ valentin.leplat, manshun.ang, nicolas.gillis\}@umons.ac.be

Abstract

In recent years, noneregative matixix factorization (NMF) with volume eres. ularization has been shown to be a powerful identifiable model; for example for hyperspectral unmixing, document classification, community detection and hidden Markov models. We show that minimum-volume NMF (min-vol NMF) can also be used when the basis matrix is rank deficient, which is a reasonable scenario for some real-world NMF problems (e.g., for unmixing multispectral images). We propose an alternating fast projected gradient method for minvol NMF and illustrate its use on rank-deficient NMF problems; namely a synthetic data set and a multispectral image.

Min-vol NMF Given $X \in \mathbb{R}_{p \times x}$ and rank r,

$$
\begin{equation*}
\left[W \in \mathbb{R}_{+}^{m \times r}, H \in \mathbb{R}_{+}^{r \times n}\right]=\underset{W \geq 0, H(:, j) \in \Delta^{r} \forall j}{\operatorname{argmin}}\|X-W H\|_{F}^{2}+\lambda \operatorname{vol}(W) \tag{1}
\end{equation*}
$$

where Δ^{r} is the r-dimensional unit simplex, λ is a parameter, $\operatorname{vol}(W)=\log \operatorname{det}\left(W^{T} W+\delta I\right)$ is a function that measures the volume of the columns of W

- Meaning : look for W with minimum volume to make the solution unique
- Under conditions on $X=W H$, this model recovers the true underlying (W, H) that generated X. [2, 3, 4]

Rank-deficient case

- A key assumption in min-vol NMF: the basis matrix W is full $\operatorname{rank}(\operatorname{rank}(W)=r)$
- It may happen that W is not full column rank; for example when $\operatorname{rank}(X) \neq \operatorname{rank}_{+}(X)$ Example:

$$
X=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \tag{2}\\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), \quad \operatorname{rank}(X)=3<\operatorname{rank}_{+}(X)=4 .
$$

The columns of X are the vertices of a square in a 2-dimensional subspace; see Fig. 2. This could also happen for example in multispectral imaging: \#materials in the image > \#spectral bands (i.e. $r>m$ so $\operatorname{rank}(W) \leq m<r$).
Focus of this work : the rank-deficient scenario, that is, $\operatorname{rank}(W)<r$.

Min-vol NMF in the rank-deficient case

$$
\begin{equation*}
\text { min-vol NMF model } \min _{W \geq 0, H(:, j) \in \Delta^{r} \forall j}\|X-W H\|_{F}^{2}+\lambda \operatorname{logdet}\left(W^{T} W+\delta I\right) \tag{3}
\end{equation*}
$$

Choice of the volume regularizer

- Common volume functions are $\operatorname{det}\left(W^{T} W\right)$ and $\operatorname{logdet}\left(W^{T} W+\delta I\right)$
- $\operatorname{vol}(W)=\log \operatorname{det}\left(W^{T} W+\delta I\right)$. Note $\sqrt{\operatorname{det}\left(W^{T} W\right)} / r$! is the vol of the convex hull of the col. of W and the origin
- As $\operatorname{det}\left(W^{T} W\right)=\prod_{i=1}^{r} \sigma_{i}^{2}(W)$, the log term weight down large σ_{i}.
- If W is rank deficient, some $\sigma_{i}(W)=0$ so $\operatorname{det}\left(W^{T} W\right)=0$. So $\operatorname{det}\left(W^{T} W\right)$ cannot distinguish between different rank-deficient sol.
- As $\operatorname{logdet}\left(W^{T} W+\delta I\right)=\sum_{i=1}^{r} \log \left(\sigma_{i}^{2}(W)+\delta\right)$, if W has one/more σ_{i} equal to zero, this measure still makes sense: among two rank-deficient sol. belonging to the same lowdimensional subspace, minimizing $\log \operatorname{det}\left(W^{T} W+\delta I\right)$ will favor a solution whose convex hull has a smaller volume within that subspace as decreasing the non-zero $\sigma_{i}\left(W^{T} W+\delta I\right)$ will decrease logdet $\left(W^{T} W+\delta I\right)$.

Choice of δ

- logdet $\left(W^{T} W+\delta I\right)$ is a non-convex surrogate for $\operatorname{rank}(W)$.
- It is sharper than the nuclear norm for δ sufficiently small.
- So if one wants to promote rank-deficient solutions, δ should be small, say $\delta \leq 0.1$.
- δ should not be too small : (1) $W \overline{W^{T}}+\delta I$ might be badly conditioned which makes the optimization problem harder to solve, (2) gives too much importance to zero sin-

Figure 1: $\frac{\log \left(x^{2}+\delta\right)-\log \delta}{\log (1+\delta)-\log \delta}, \ell_{1}$ norm and ℓ_{0} norm.

Algorithm for min-vol NMF $_{\text {Atternating minimization approach }}$

- On update H, use projected fast gradient method (PFGM)
- On update W, use PFGM applied on an strongly convex upper approximation of the objective function;
$\ell(W)=\|X-W H\|_{F}^{2}+\lambda \log \operatorname{det}\left(W^{T} W+\delta I\right) \leq 2 \sum_{i=1}^{n}\left(\frac{1}{2} w_{i}^{T} A w_{i}-c_{i}^{T} w_{i}\right)+b=\bar{\ell}(W)$,
where $Y=\left(Z^{T} Z+\delta I\right)^{-1}$ and $A=H H^{T}+\lambda Y$ are positive definite for $\delta, \lambda>0$, $C=X H^{T}$, and b is a constant independent of W. Note $\bar{\ell}(W)=\ell(W)$ for $Z=W$.
Minimizing the upper bound $\bar{\ell}(W)$ of $\ell(W)$ requires to solve m independent strongly convex optimization problems with Hessian matrix A.
- PFGM has a linear rate of convergence $1-\sqrt{\kappa^{-1}}$ where κ is the condition number of A
- subproblem on H is not strongly cvx when W is rank deficient; PFGM converges sublinearly
- when W is rank deficient; $\frac{\lambda}{\delta} \leq \lambda_{\max }(A) \leq\|H\|_{2}^{2}+\frac{\lambda}{\delta}$ and as smaller δ gives larger the conditioning of A hence the slower will be the PFGM.

Min-vol NMF using alternating PFGM

- Initialize (W, H) using SNPA, let $\lambda=\tilde{\lambda} \frac{\|X-W H\|^{2}}{\log \operatorname{loget}\left(W^{T} W+\delta I\right)}$
- For $k=1,2$,
- Let $A=H H^{T}+\lambda\left(W^{T} W+\delta I\right)^{-1}$ and $C=X H^{T}$
- Perform a few steps of PFGM on the problem $\min _{U \geq 0} \frac{1}{2}\left\langle U^{T} U, A\right\rangle-\langle U, C\rangle$, with initialization $U=W$
- Perform a few steps of PFGM on problem $\min _{H(:, j) \in \Delta^{r} \forall j}\|X-W H\|_{F}^{2}$

Numerical Experiments

Synthetic data set. $X=W H \in \mathbb{R}^{4 \times 500}$ constructed with W as matrix from (2) so $\operatorname{rank}(W)=$ $3<r=4$, and each col. of H is distributed using the Dirichlet distribution of parameter $(0.1, \ldots, 0.1)$. Each col. of H with an entry larger 0.8 is resampled as long as this condition does not hold. This guarantees that no data point is close to a col. of W (this is sometimes referred to as the purity index). As observed on Fig. 2, proposed algorithm is able to perfectly recover the true col. of W

Fig. 3 illustrates the same experiment where noise is added to $X=\max (0, W H+N)$ where $N=\epsilon$ randn (m, n) in Matlab notation (i.i.d. Gaussian distribution of mean zero and standard deviation ϵ). Note that the average of the entries of X is 0.5 (each col. is a linear combination of the col. of W, with weights summing to one). Fig. 3 displays the average over 20 randomly generated matrices X of the relative error $d(W, \tilde{W})=\frac{\|W-\tilde{W}\|_{F}}{\|W\|_{F}}$ where \tilde{W} is the solution computed by Alg. depending on the noise level ϵ. This illustrates that min-vol NMF is robust against noise since the $d(W, \tilde{W})$ is smaller than 1% for $\epsilon \leq 1 \%$.

Multispectral image. San Diego airport is a hyperspectral image (HSI) : 158 clean bands, 400×400 pixels for each spectral image. Mainly 3 types of materials: road surfaces, roofs and vegetation. The image can be well approximated using $r=8$. As we are interested in $\operatorname{rank}(W)<r$, we pick $m=5$ spectral band using successive projection algorithm (Gram-Schmidt with column pivoting) applied on X^{T}. This provides bands that are representative and we are factoring 5 -by-160000 matrix using a $r=8$. Here we used $\tilde{\lambda}=0.1$ and 1000 iterations. From the initial solution provided by SNPA, min-vol NMF reduce error $\|X-W H\|_{F}$ by a factor of 11.7 while term $\operatorname{logdet}\left(W^{T} W+\delta I\right)$ only increases by a factor of 1.06 . Final relative error $\frac{\|X-W H\|_{F}}{\|X\|_{F}}=0.2 \%$.

Conclusion

- min-vol NMF can be used meaningfully for rank-deficient NMF's
- We proposed an efficient algorithm to tackle this problem
- Open questions
- Under which conditions can we prove the identifiability of min-vol NMF in the rankdeficient case ?
- Can we prove robustness to noise of such techniques? (The question is also open for the full-rank case.)
- Can we design faster and more robust algorithms? And algorithms taking advantage of the fact that the solution is rank-deficient?

