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Motivation

Goal: measure linear relationship among variables
→ can use correlation

Challenges: data – privacy-sensitive and distributed
→ how to guarantee privacy?
→ how to measure the best correlation metric?
→ how to do it in distributed setting?

Canonical Correlation Analysis (CCA)

CCA finds subspaces for different “views” of data [1]
→ “views” are maximally correlated after projection

-1 0 1
-1

-0.5

0

0.5

1
Original Data

-2 0 2
-2

-1

0

1

2
Projected Data

Can we have a CCA algorithm that preserves privacy,
provides good utility and operates in distributed-data

setting?

Problem Formulation

→ consider a system with S different sites

→ site s contains views: Xs ∈ RDx×Ns, Ys ∈ RDy×Ns

→ pooled data scenario: X = [X1 . . .XS] ∈ RDx×N and
Y = [Y1 . . .YS] ∈ RDy×N

→ goal: find subspaces U ∈ RDx×K, V ∈ RDy×K [3]

minimize
U,V

‖U>X−V>Y‖2F

subject to
1

N
U>XX>U = I,

1

N
V>YY>V = I,

1

N
U>XY>V = I.

Want to estimate U and V in the distributed setting
while preserving privacy

Differential Privacy (DP)

Definition: Algorithm A(D) taking values in a set T provides
(ε, δ)-differential privacy [2] if
P (A(D) ∈ S) ≤ eεP (A(D′) ∈ S) + δ for all measurable S ⊆ T
and all neighboring data sets D and D′ differing in a single entry.
A conventional scheme:
• Compute Zs =

[
X>s Y>s

]>
and Cs =

1
Ns
ZsZ

>
s

• Send Ĉs = Cs + Es to aggregator, where
{[Es]ij : i ∈ [D], j ≤ i} drawn i.i.d. from N (0, τ 2s )

• Aggregator computes Ĉ = 1
S

∑S
s=1 Ĉs

• Variance of the estimator: τ 2ag ,
τ 2s
S

→ In pooled-data setting: noise variance τ 2c =
τ 2s
S2

How can we achieve the same noise variance in the
distributed setting? → employ CAPE protocol [4]

Proposed Algorithm: capeCCA

Privacy Analysis

• Analyze Gauss (AG) algorithm: input perturbation on 2nd-moment matrix [2]
• DP is post-processing invariant ⇒ computation of U and V is (ε, δ)-DP
• Projection/clustering do not satisfy DP ⇒ can be modified at the cost of utility

Simulation Results

• U of Wisc. X-ray Microbeam (XRMB) Dataset → view 1: speech; view 2: jaw movement
• fMRI+EEG Dataset → view 1: fMRI; view 2: EEG
• Clustering performance on XRMB → CHIndex
• Estimation of correlation on fMRI+EEG → errcorr
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Performance
Variation on
fMRI +
EEG
Dataset
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Conclusion and Future Works

capeCCA achieves the same utility as pooled-data scenario in the
honest-but-curious setting

Takeaway:
• capeCCA has better utility than local and conv for

the same privacy level
• capeCCA can reach non− priv in some regimes
• for fixed ε: more samples → better performance
• for fixed N and S: higher ε → better performance

Future directions:
• can we scrap the “trusted”

noise generator? [4]
• can we achieve the same in

an asymmetric network? [4]
• can we achieve adapt our

approach to δ = 0?
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