

Phylogenetic Analysis of Software Using Cache Miss Statistics

<u>Sebastiano Verde</u>, Simone Milani, Giancarlo Calvagno - University of Padova {sebastiano.verde, simone.milani, calvagno}@dei.unipd.it

Abstract

While the phylogenetic analysis of multimedia documents keeps being investigated, some recent studies have shown the possibility of re-using the same strategies to analyze the evolution of computer programs (Software Phylogeny), considering its several applications spanning from copyright enforcement to malware detection.

This work presents a solution for reconstructing the phylogenetic dependencies among different releases of a given program. The proposed method collects cache miss statistics during the program execution, builds a dissimilarity matrix from the results, and then estimates the corresponding Software Phylogenetic Tree (SPT) using a refined minimum spanning tree algorithm.

Cache profiling

Ir	I1mr	ILmr	Dr	D1mr	DLmr	Dw	D1mw	DLmw	file:function
8,821,482	5	5	2,242,702	1,621	73	1,794,230	0	0	<pre>getc.c:_I0_getc</pre>
5,222,023	4	4	2,276,334	16	12	875,959	1	1	concord.c:get_word
2,649,248	2	2	1,344,810	7,326	1,385	•			vg_main.c:strcmp
2,521,927	2	2	591,215	0	0	179,398	0	0	concord.c:hash
2,242,740	2	2	1,046,612	568	22	448,548	0	0	ctype.c:tolower
1,496,937	4	4	630,874	9,000	1,400	279,388	0	0	concord.c:insert
897,991	51	51	897,831	95	30	62	1	1	???:???
598,068	1	1	299,034	0	0	149,517	0	0	<pre>/sysdeps/generic/lockfile.c:flockfile</pre>
598,068	0	0	299,034	0	0	149,517	0	0	<pre>/sysdeps/generic/lockfile.c:funlockfile</pre>
598,024	4	4	213,580	35	16	149,506	0	0	vg_clientmalloc.c:malloc
446,587	1	1	215,973	2,167	430	129,948	14,057	13,957	<pre>concord.c:add_existing</pre>
341,760	2	2	128,160	0	0	128,160	0	0	<pre>vg_clientmalloc.c:vg_trap_here_WRAPPER</pre>
320,782	4	4	150,711	276	0	56,027	53	53	<pre>concord.c:init_hash_table</pre>
298,998	1	1	106,785	0	0	64,071	1	1	concord.c:create
149,518	0	0	149,516	0	0	1	0	0	???:tolower@@GLIBC_2.0
149,518	0	0	149,516	0	0	1	0	0	<pre>??:fgetc@@GLIBC_2.0</pre>
95,983	4	4	38,031	0	0	34,409	3,152	3,150	concord.c:new_word_node
85,440	0	0	42,720	0	0	21,360	0	0	<pre>vg_clientmalloc.c:vg_bogus_epilogue</pre>

Using Cachegrind tool. Cache statistics are represented with 9 features per function.

Cache typeInstructionsData (reads)Data (writes)Total cache accesses I_r D_r D_w

1st-level cache misses $I1_{mr}$ $D1_{mr}$ $D1_{mw}$ Last-level cache misses IL_{mr} DL_{mr} DL_{mw} M functions called by the program $\longrightarrow C \triangleq$ cache data matrix ($M \times 9$)

Software dissimilarity

Given a pair of matrices (C_i^f, C_j^f) , we define their dissimilarity as

$$d_{i,j}^f = \|C_i^f - C_j^f\|_2,$$
(1)

where $\|\cdot\|_2$ denotes the matrix 2-norm.

Different programs may use different functions \Rightarrow incompatible matrix dimensions. Possible workarounds:

1. **intersection** of the two function sets;

2. union of the two function sets (missing functions represented with zero-vectors).

Two-step minimum spanning tree

The algorithm allows the estimation of a single minimum spanning tree from multiple realizations of the dissimilarity matrix, through a twofold application of a standard MST algorithm.

1. $\forall f \text{ run Kruskal's algorithm on } d_{i,j}^f \longrightarrow \min. \text{ spanning tree } \tilde{G}_f$

2. $\forall (i, j)$ count occurrences $e_{i,j}$ of edge (i, j) among all the estimated trees \longrightarrow edge count matrix $E = [e_{i,j}]$

Method comparison

Percentage of correct edges vs. no. input videos in Thor codec. Comparison between 2-step Kruskal (2*K*) and average dissimilarity (\overline{D}) combined with cache intersection, union and pixel-based method [1].

3. Run Kruskal's algorithm on $-E \longrightarrow \tilde{G}$

Number of input videos

Software set and results

	Analyzed softwa	re	Percentage of correct edges						
Software name	Туре	Input	Releases	$2K_{\rm union}$	$ar{D}_{ ext{union}}$	$2K_{\rm inters}$	$\bar{D}_{ m inters}$	Pixel-based [1]	
Thor	Video coding	7 videos	10	0.89	0.89	0.67	0.78	0.56	
OpenJPEG	Image coding	30 images	6	0.60	0.60	0.60	0.60	0.20	
RNNoise	Audio denoising	40 audios	5	0.50	0.25	0.50	0.25	_	
LZ4	Data compression	30 images	7	0.67	0.67	0.67	0.67	_	
LIBSVM	Machine learning	5 datasets	7	0.83	0.83	0.50	0.50	_	

[1] Sebastiano Verde, Simone Milani, and Giancarlo Calvagno, "Phylogenetic analysis of multimedia codec software," in Proc. of EUSIPCO 2018, Sept. 2018.