

FAST SAMPLING OF GRAPH SIGNALS WITH NOISE VIA NEUMANN SERIES CONVERSION

GRAPH SIGNAL PROCESSING

- \Box Signals on irregular data kernels: $\mathcal{G} = (\mathcal{V}, \mathbf{W})$
- Combinatorial Laplacian matrix

$$\mathbf{L} = \mathbf{D} - \mathbf{W} \qquad d_i = \sum_{j=1}^N w_{i,j}$$

where degree matrix **D** is a diagonal matrix with entries

• Graph Fourier transform (GFT)

• Bandlimited graph signal The GFT coefficient \tilde{x} are **non-zeros** only at the first K elements:

> $\mathbf{x} = \mathbf{V}_{K} \tilde{\mathbf{x}}_{K}$ The first *K* columns of **V**

SAMPLING OF NOISY BANDLIMITED GRAPH SIGNAL

- **Motivation:** sensing (acquiring samples) is expensive.
- **Goal:** sampling the *most informative nodes* for signal reconstruction.
- **Signal model:** *noisy bandlimited* graph signal
- Previous works:

Fen Wang^{*}, Gene Cheung⁺, Yongchao Wang^{*} *Xidian University, Xi'an, China ; + York University, Toronto, Canada

Image patch on 2D grid

Signal on a graph

AUGMENTED A-OPTIMAL GRAPH SAMPLING

A-optimal sampling based on least square reconstruction_<u>Sampling operator</u>

- Noisy observation: • Reconstruction MSE: $\|\hat{\mathbf{x}}-\mathbf{x}\|_2^2 = \operatorname{Tr}\left(\left[\left(\mathbf{C}\mathbf{V}_K\right)^T \mathbf{C}\mathbf{V}_K\right]^{-1}\right)$
- Augmented A-optimal sampling objective

Neumann series theorem If the absolute value of eigenvalues of A are all in the range (-1,1), then its Nuemann Series converges: $(\mathbf{I} - \mathbf{A})^{-1} = \sum \mathbf{A}^{l}$

Proposed objective function Approximate objective function

$$\mathbf{C}^* = \arg\min_{\mathbf{C}} \operatorname{Tr}\left(\mathbf{T}_{\mathcal{S}}^{\mathrm{FGFT}} + \mu \mathbf{I}\right)^{-1}$$

RANK-1 UPDATE IN GREEDY ALGORITHM

- □ Minimize approximate objective via <u>greedy</u> sampling algorithm.
- \square Rank-1 update in each greedy step: reduce complexity from M^3 to M^2

$$\mathbf{G}_{\mathcal{S}\cup\{i\}}^{-1} = \begin{bmatrix} \mathbf{G}_{\mathcal{S}}^{-1} + a^{-1}\mathbf{G}_{\mathcal{S}}^{-1}\mathbf{g}_{i}\mathbf{g}_{i}^{\top}\mathbf{G}_{\mathcal{S}}^{-1} & -a^{-1}\mathbf{G}_{\mathcal{S}}^{-1}\mathbf{g}_{i} \\ -a^{-1}\mathbf{g}_{i}^{\top}\mathbf{G}_{\mathcal{S}}^{-1} & a^{-1} \end{bmatrix}$$
where $\mathbf{G} = \mathbf{T}^{\text{FGFT}} + \mu \mathbf{I}$ TABLE I

- No explicit full eigen-decomposition
- A-optimal related sampling objective
- Fast sampling in each greedy step

e-mail: fenwang@stu.xidian.edu.cn;ychwang@mail.xidian.edu.cn;genec@yorku.ca

Small identity shift with $0 < \mu < 1$

- Chebyshev polynomial approximation
- Fast graph Fourier transform

COMPLEXITY COMPARISON OF DIFFERENT GRAPH SAMPLING STRATEGIES

	Preparation	Selection		
Spectral Proxies	NONE	$\mathcal{O}\left(k\left \mathcal{E}\right MT_{2}\left(k\right)+NM\right)$		
E-optimal	$\mathcal{O}\left(\left(\left \mathcal{E}\right M+RM^{3}\right)T_{1}\right)$	$\mathcal{O}(NM^4)$		
MFN	$\mathcal{O}\left(\left(\left \mathcal{E}\right M+RM^{3}\right)T_{1}\right)$	$\mathcal{O}(NM^4)$		
MIA	$\mathcal{O}(qN \mathcal{E})$	$O(NLM^{3.373})$		
Proposed GFS	$\mathcal{O}(N^2 \log^2 N)$	$O(NM^3)$		

SHIFT PARAMETER DESIGN

 \Box Design of μ based on inverse computation stability Inverse of matrix G_{S} unstable if μ is extremely small since its eigenvalues are in $[\mu, 1 + \mu]$. We propose to bound the condition number of \mathbf{G}_{s}

Table 1. Reconstruction MSE of Different μ at 0dB

Graph	μ	Sample size				
		100	110	120	130	140
G1	10^{-5}	16.10	14.55	13.43	12.44	11.63
	1/99	16.07	14.59	13.43	12.46	11.64
G2	10^{-5}	20.77	18.68	17.09	15.77	14.63
	1/99	20.77	18.73	17.12	15.78	14.64

EXPERIMENTAL RESULTS

Experimental settings

• Graph model:

(G1) Community graphs with 1000 nodes and 31 communities;

(G2) Sensor graphs with 1000 nodes; (G3) Hyper-cube graphs with 1002 nodes

• Graph signal model:

- (1) Bandwidth: K = 50
- (2) GFT coefficients: the non-zero coefficients are randomly generated from $N(1, 0.5^2)$; Coefficients after K = 50 are all zeros.
- Noise model:

Additional white Gaussian noise (AWGN) with different signal-to-noise ratios (SNRs)

Reconstruction MSE

- Least square reconstruction
- Different sampling methods

REFERENCES

- no. 14, pp. 3775–3789, 2016.
- 6523, 2015.

YORK UNIVERSITY

$$\kappa(\mathbf{G}_{\mathcal{S}}) = \frac{\lambda_{\max}(\mathbf{G}_{\mathcal{S}})}{\lambda_{\min}(\mathbf{G}_{\mathcal{S}})} \leq \frac{1+\mu}{\mu} \leq \kappa$$

\BoxReconstruction MSE of different μ

Design µ based explicit condition number of G_S requires the information of S. thus we bound the worst case, which has no relation to S

• In experiments, we set $\kappa_0 = 100$. Reconstruction MSE is not sensitive to the choice of μ in community graph at 0dB.

G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, "Graph spectral image processing," Proc. IEEE, vol. 106, no.5, pp. 907–930, 2018.

• F. Wang, G. Cheung, and Y. C. Wang, "Low-complexity Graph Sampling with Noise and Signal Reconstruction via Neumann Series," Dec. 2018, arXiv:1812.02109. • A. Anis, A. Gadde, and A. Ortega, "Efficient sampling set selection for bandlimited graph signals using graph spectral proxies," IEEE Trans. Signal Process.,, vol. 64,

• S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, "Discrete signal processing on graphs: Sampling theory," IEEE Trans. Signal Process., vol. 63, no. 24, pp. 6510-

• Shomorony and A. Avestimehr, "Sampling large data on graphs," in *Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP)*, pp. 933-936, Dec. 2014. • F. Wang, Y. C. Wang and G. Cheung, "A-optimal sampling and robust reconstruction for graph signals via truncated Neumann series," *IEEE Signal Processing Letters*, vol. 25, no. 5, pp. 680-684, May. 2018.