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FAST SAMPLING OF GRAPH SIGNALS WITH NOISE VIA NEUMANN SERIES CONVERSION
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GRAPH SIGNAL PROCESSING
 Signals on irregular data kernels: 

• Combinatorial Laplacian matrix

where degree matrix 𝑫 is a diagonal matrix with entries 

• Graph Fourier transform (GFT)

• Bandlimited graph signal

The GFT coefficient ෥𝒙 are non-zeros only at the first 𝐾 elements：

SAMPLING OF NOISY BANDLIMITED GRAPH SIGNAL 

RANK-1 UPDATE IN GREEDY ALGORITHM

AUGMENTED A-OPTIMAL GRAPH SAMPLING

A-optimal sampling based on least square reconstruction

Augmented A-optimal sampling objective

Neumann series theorem

If the absolute value of eigenvalues of 𝐴 are all in the range (-1,1), then its Nuemann Series converges: 

Proposed objective function

Approximate objective function 

Minimize approximate objective via greedy sampling algorithm. 

 Rank-1 update in each greedy step: reduce complexity from 𝑴𝟑 to 𝑴𝟐

where 

EXPERIMENTAL RESULTS
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Motivation: sensing (acquiring samples) is expensive.

 Goal: sampling the most informative nodes for signal reconstruction.

 Signal model: noisy bandlimited graph signal

◆ Previous works:

Applications:

Graph sampling

Selection sampling

Random selection 

Deterministic

Local measurement

Aggressive sampling

Bandlimitedness

Smoothness:

A-optimal (M. Tsitsvero.TSP2016; F. Wang. SPL2018)

E-optimal (S. Chen. TSP2015)

Spectral proxies (A. Anis. TSP2016; A. Anis. TIT2018)

Localized coverage (A. Sakiyama. TSP2019)

GMRF model (P. Chen. ICASSP2018; Y. Bai. ICASSP 2019)

Previous works are not solving the A-optimality criterion directly without eigen-decomposition 
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• Noiseless observation:

• Noisy observation:

• Reconstruction MSE:
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Sampling operator 

corresponding to 𝑺

Small identity shift with 𝟎 < 𝝁 < 𝟏
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• Chebyshev polynomial 

approximation

• Fast graph Fourier transform
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• No explicit full eigen-decomposition

• A-optimal related sampling objective

• Fast sampling in each greedy step
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 Design of 𝜇 based on inverse computation stability 

Inverse of matrix       unstable if 𝜇 is extremely small since its eigenvalues are in 

[𝜇, 1 + 𝜇] . We propose to bound the condition number of 

Reconstruction MSE of different 𝜇

SHIFT PARAMETER DESIGN

G

G

Design 𝝁 based explicit condition 

number of 𝑮𝑺 requires the information 

of 𝑺, thus we bound the worst case, 

which has no relation to 𝑺

• In experiments, we set κ0 = 100.

Reconstruction MSE is not

sensitive to the choice of μ in

community graph at 0dB.

 Experimental settings
• Graph model:

(G1) Community graphs with 1000 nodes 

and 31  communities; 

(G2) Sensor graphs with 1000 nodes;

(G3) Hyper-cube graphs with 1002 nodes.

• Graph signal model:

(1) Bandwidth: 𝐾 = 50

(2) GFT coefficients: the non-zero coefficients 

are randomly generated from 𝑁(1, 0.52);  

Coefficients after  𝐾 = 50 are all zeros. 

• Noise model:

Additional white Gaussian noise (AWGN) 

with different signal-to-noise ratios (SNRs).

 Reconstruction MSE
• Least square reconstruction

• Different sampling methods

The proposed sampling method outperforms other three state-of-the-art  

sampling methods and approximates the MFN sampling in different sample 

size/ graphs/ SNRs with lower complexity .
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Our goal
Expected MSE value assuming i.i.d noise 

model with unit variance


