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Background & Motivation

• Speech Emotion Recognition:
– Extracting the emotional state of a speaker from his or her speech;
– In this study, we consider categorical representations (i.e., happiness,

sadness, anger, etc.) for utterance-level speech emotion recognition.

•Application:
– Human machine interaction (HCI);
– Monitoring, control and psychological consultations.

• Standard Framework:
– Extraction of emotion-specific features;
– Decision making based on the extracted features.

•Contributions:
– Investigate three hidden Markov model (HMM) based architectures

for utterance-level speech emotion recognition;
– Propose to improve the emotion recognition rate by incorporating var-

ious advanced techniques from the automatic speech recognition area.

The HMM based Architectures for Speech Emotion Recognition
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Figure 1: The Hidden Markov Generation Model

•Hidden Markov Model (HMM):
– An HMM is a generative model in which the system being modeled is

assumed to be a Markov process with hidden states (Fig. 1);
– In this work, we develop C HMMs {λc, (c = 1, ..., C)} for C discrete

emotions, where C varies among database;
– For an unknown input speech utterance O, it is assigned to the emo-

tion label
c∗ = argmax

1≤c≤C
P (O|λc) (1)

where P (O|λc) is calculated using the Viterbi algorithm.

•GMM-HMM Based Speech Emotion Recognition:
– In GMM-HMM, the observation function for the HMM state si is de-

fined as a weighted sum of Mi multivariate Gaussian functions:

bi(ot) = P (ot|qt = si) =

Mi∑

l=1

ωilN (ot|µil,Σil) (2)

where N (ot|µil,Σil) is a Gaussian component with mean vector µil

and covariance matrix Σil. For a feature vector ot of dimension n:

N (ot|µil,Σil) =
exp{−1

2(ot − µil)
TΣ−1il (ot − µil)}√

(2π)n|Σil|
(3)

ωil denotes the mixture weight of Gaussian component l of state si,
and the weights are subject to

∑Mi

l=1 ωil = 1.

• SGMM-HMM Based Speech Emotion Recognition:
– Drawbacks of GMM-HMM: Involves training a completely separate

GMM in each HMM state, which might suffer from over-fitting;
– In SGMM-HMM, the covariance matrix for each GMM component is

shared between states, whereas the mean and mixture weights are al-
lowed to vary in a subspace of the full parameter space, thus providing
a more compact model representation;

– The observation function for a SGMM-HMM at some state si has the
following form:

bi(ot) = P (ot|qt = si) =

M∑

l=1

ωilN (ot|µil,Σl) (4)

where µil is computed using linear subspace projection matrix Ml and
projection vector vi for the state si:

µil = ml + Mlvi (5)

and the mixture weight ωil is computed from linear subspace projec-
tion vector wl and the same sate-dependent projection vector vi:

ωil =
exp{wT

l vi}∑M
j=1 exp{wT

j vi}
(6)

•DNN-HMM Based Speech Emotion Recognition:
– Drawbacks of GMM-HMM and SGMM-HMM: Statistically inef-

ficient to model non-linear data in the feature space;
– In DNN-HMM, the GMMs (or SGMMs) are replaced with DNN to es-

timate the observation probabilities of input acoustic features at each
HMM state;

– All of the training utterances, combined with their labeled state se-
quence which are generated from GMM-HMM or SGMM-HMM
alignment, are fed as inputs to train the DNN;

– The outputs of the DNN are the posterior probabilities of the C × Q
output units, with C and Q denoting the emotion class number and
HMM state number, respectively;

– According to the Bayesian theorem, the observation probability
p(ot|qt) is calculated as follows:

p(ot|qt) =
p(qt|ot)p(ot)

p(qt)
(7)

where p(qt) is estimated from an initial state-level alignment of the
training set; and p(ot) is independent of the state sequence, and thus
can be ignored.

Speech Corpora

•Three corpora of acted emotions are used to evaluate the validity
and universality of our approach: a Chinese emotional corpus (CA-
SIA), a German emotional corpus (Emo-DB), and an English emotional
database (IEMOCAP), which are summarized in Fig. 2.

Figure 2: Overview of the selected emotion corpora. (#Utterance: number of utterances used, #Subjects:
number of subjects, and #Emotion: number of emotions involved.)
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Speaker-dependent Speaker-independent

CASIA Emo-DB IEMOCAP CASIA Emo-DB IEMOCAP
UA [%] WA [%] UA [%] WA [%] UA [%] WA [%] UA [%] WA [%] UA [%] WA [%] UA [%] WA [%]

(1) GMM-HMM 76.60 76.60 77.45 82.14 61.59 59.59 44.31 44.31 85.02 86.43 57.65 53.00
(2) GMM-HMM(ST) 79.93 79.93 81.15 83.33 63.51 61.93 46.33 46.33 86.15 87.38 59.54 53.80
(3) GMM-HMM(ST+SAT) 83.26 83.26 83.95 85.71 64.33 63.33 50.44 50.44 85.50 87.38 60.25 55.00
(4) SGMM-HMM 86.88 86.88 88.25 90.48 66.63 64.83 53.81 53.81 86.23 87.62 61.77 56.40
(5) SGMM-HMM(MMI) 87.50 87.50 − − 66.94 65.86 52.69 52.69 − − 62.23 57.20
(6) DNN-HMM(GMM-Ali.) 90.74 90.74 64.38 69.56 65.20 64.66 38.35 38.35 64.69 65.28 57.12 60.13
(7) DNN-HMM(SGMM-Ali.) 91.32 91.32 64.60 71.43 65.12 64.17 39.40 39.40 64.71 67.38 58.02 62.28

Experimental Settings

•Acoustic Features:
– 15-dimensional MFCCs with the first- and second-order derivatives +

pitch + voicing probability.

•DNN Architecture:
– One input layer, three hidden layers with 256 neurons per layer, fol-

lowed by one softmax loss layer;
– A hyperbolic tangent non-linearity is applied between two consecutive

hidden layers;

•DNN Training:
– Frame classification training is based on mini-batch Stochastic Gradi-

ent Descent, optimizing frame cross-entropy;
– The initial learning rate of 0.015 is gradually decreased to 0.002 after

20 epochs.

•Both speaker-dependent (SD) and speaker-independent (SI) scenar-
ios are considered:
– SD: Randomly select 80% as the training set, 10% as the validation set

and the rest 10% as the test set;
– SI: K-folds leave-one-speaker-out cross-validation, where K denotes

the number of speakers in each database.

Results & Analysis

• Fig. ?? shows the performance comparison between different HMM-
based systems on three corpora;

•Comparison of recognition accuracy on CASIA. (Spk-Dep.: speaker-
dependent, and Spk-Indep.: speaker-independent.)

Methods for comparison Spk-Dep. [%] Spk-Indep. [%]

Sun et al. [1] (2015) 85.08 43.50
Wen et al. [2] (2017) − 48.50
Liu et al. [3] (2018) 90.28 38.55

Our method

GMM-HMM(ST+SAT) 83.26 50.44
SGMM-HMM 86.88 53.81
DNN-HMM(SGMM-Ali.) 91.32 39.40

•Comparison of weighted accuracy on Emo-DB for speaker-independent
task. (#Emotion: number of emotions used in each experiment.)

Methods for comparison #Emotion W. Accuracy [%]

Li et al. [4] (2016) 4 86.38
Semwal et al. [5] (2017) 6 80.00
Wen et al. [2] (2017) 7 82.32

Our method

GMM-HMM(ST+SAT) 5 87.38
SGMM-HMM 5 87.62
DNN-HMM(SGMM-Ali.) 5 67.38

•Comparison of unweighted accuracy and weighted accuracy on IEMO-
CAP for SI task.

Methods for Comparison U. Accuracy [%] W. Accuracy [%]

Huang et al. [6] (2016) 49.96 59.33
Ma et al. [7] (2017) 62.54 57.85
Mirsamadi et al. [8] (2017) 58.80 63.50
Luo et al. [9] (2018) 63.98 60.35

Our Method

GMM-HMM(ST+SAT) 60.25 55.00
SGMM-HMM(MMI) 62.23 57.20
DNN-HMM(SGMM-Ali.) 58.02 62.28
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Figure 3: Comparison of unweighted accuracy and weighted accuracy on different HMM based architectures on CASIA corpus, Emo-DB corpus and IEMOCAP database, respectively. (ST: HMM state tying, SAT: speaker
adaptive training, MMI: sequential discriminative training with maximum mutual information criterion, GMM (SGMM) -Ali.: alignment generated from monophone GMM-HMM (SGMM-HMM))
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