Problem Description

In this work we consider an underdetermined multi-measurement vector (MMV) linear regression problem where the parameter matrix is row-sparse and where an additional constraint fixes the number of nonzero elements in the active rows (see also Fig. 1). Even
f this additional constraint offers side structure information that could be exploited to improve the estimation accuracy, it is extremely nonconvex and must be dealt with with caution. A detection algorithm is proposed that capitalizes on compressed sensing results and on the generalized distributive law (message passing on factor graphs).

Details

We consider the most classic MMV framework where the observation matrix, $\mathbf{Y} \in \mathbb{R}^{N \times L}$, is modeled as the product of the sampling matrix, $\mathbf{S} \in \mathbb{R}^{N \times M}$, and the true parameter matrix, $\mathbf{X}^{*} \in \mathbb{R}^{M \times L}$, plus additive white Gaussian noise, $\mathbf{W} \in \mathbb{R}^{N \times L}$
$\mathbf{Y}=\mathbf{S X}^{*}+\mathbf{W}$

As introduced before, we are interested in the underdetermined problem where $N<M$
Even if such problem is ill-conditioned, compressed sensing (CS) results show that \mathbf{X}^{*} as \mathbf{X}^{*} is sparse. One possible solution is to approximate \mathbf{X}^{*} by

$$
\hat{\mathbf{X}}=\arg \min _{\mathbf{X}} \frac{1}{2}\|\mathbf{Y}-\mathbf{S X}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{X}\|_{1}
$$

with λ a real positive constant.

However, the model of Fig. 1 is characterized by a distinguishing sparsity structure, which
we would like to exploit to improve the estimate precision. Specifically, we consider the we would like to exploit to improve the estimate precision. Specifically, we consider the
case where the nonzero elements of \mathbf{X}^{*} are concentrated in few rows. Moreover, each of these active rows has a fixed number of nonzero elements, namely r. In other words, for each row $\mathbf{r}_{m}^{*} \in \mathbb{R}^{L}$ of $\mathbf{X}^{*}, m=1,2, \ldots, M$, we have the additional constraint that either $\left\|\mathbf{r}_{m}^{*}\right\|_{0}=0 \quad$ or $\quad\left\|\mathbf{r}_{m}^{*}\right\|_{0}=r$
One readily sees that this constraint is nonconvex and should be handled with care

W
Y
. 1: Signal model of the considered MMV problem. Note that the parameter mat

Literature Overview

To the best of our knowledge, none of the available solutions for structured sparse prob ems captures the specificities of this model. Nevertheless, we briefly comment on how hey can be employed to approximate the solution to the problem at hand.

Row Sparsity

The first approximation consists in solving the problem with tools designed for row-sparse parameter matrices, (see, e.g., [1] and references therein).

Cons: Algorithms for row-sparse matrices are indifferent to row structure and typically return rows with all active entries. An extra step is needed to enforce the required structure (e.g., hard thresholding to select the r entries with highest magnitude).

Composite Regularizer

A slightly more sophisticated solution consists in relaxing (1) subject to (2) into

$$
\hat{\mathbf{X}}=\arg \min _{\mathbf{X}} \frac{1}{2}\|\mathbf{Y}-\mathbf{S} \mathbf{X}\|_{\mathrm{F}}^{2}+\lambda\|\mathbf{X}\|_{1}+\mu\|\mathbf{X}\|_{2,1}
$$

with $\lambda, \mu>0$. The purpose of the $\ell_{2,1}$ regularizer, namely

$$
\|\mathbf{X}\|_{2,1}=\sum_{m=1}^{M} \sqrt{\sum_{l=1}^{L} x_{m, l}^{2}}
$$

is to promote row sparsity. Together with the classic ℓ_{1} regularizer, the resulting estimate, \mathbf{X}, will show few active rows, each one with few active entries [2] (see also Fig. 2). Pros: Problem (3) is convex and efficient; scalable algorithms exist for its solution.

Cons: The rows of the estimate, \mathbf{X}, do not necessarily meet the structure constraints. Extra steps (hard decisions) may be required.

Other Solutions

Other works in the literature allow for a more accurate characterization of the sparsity structure [3-5]. All these solutions, however, require an exhaustive search over the atoms of the sparsity model: This can be a severe limitation for the problem at hand where each row shows $\binom{L}{r}$ different activation patterns.

Proposed GDL-Based Approach

When dealing with sparsity structure, a number of works suggest that greedy algorithms are a better option. Indeed, convex continuous ctive 1 a .

$$
\hat{\mathbf{X}}=\arg \min _{\mathbf{X}} \frac{1}{2}\|\mathbf{Y}-\mathbf{S} \mathbf{X}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{X}\|_{0} \quad \text { s. to (2) }
$$

By noting that the objective function can be decoupled along the columns of \mathbf{X}, that is

$$
\frac{1}{2}\|\mathbf{Y}-\mathbf{S X}\|_{\mathrm{F}}^{2}+\lambda\|\mathbf{X}\|_{0}=\frac{1}{2} \sum_{l=1}^{L}\left\|\mathbf{y}_{l}-\mathbf{S} \mathbf{x}_{l}\right\|_{2}^{2}+\lambda\left\|\mathbf{x}_{l}\right\|_{0}
$$

we see that each entry $x_{m, l}$ of \mathbf{X} relates to only one of the column terms above and only one of the row structure constraints in (2), as depicted in the factor graph of Fig. 3. Then, we propose to solve problem (4) by means of an iterative min-sum message-passing algorithm that alternates between column problems and row problems. In other words, we apply the Generalized Distributive Law (GDL) [6,7$]$. More specifically, the column- l-to-row- m message $\phi_{m, l}^{c}\left(x_{m, l}\right)$ is the column marginal
$\phi_{m, l}^{\mathrm{c}}\left(x_{m, l}\right)=\min _{\left\{x_{i, l}\right\rangle_{i \neq m}} \frac{1}{2}\left\|\mathbf{y}_{l}-\mathbf{S} \mathbf{x}_{l}\right\|_{2}^{2}+\lambda\left\|\mathbf{x}_{l}\right\|_{0}+\sum_{i \neq m} \phi_{i, l}^{\mathrm{r}}\left(x_{i, l}\right) \quad(5)$

is the row marginal that propagates from row m to column l.

Fig. 3: Factor-graph representation of problem (4). Each row blok

Pros: This approach promotes the desired structure.

Cons: The number of cycles is huge, jeopardizing convergence Quick fix: ignore rows where all column problems return zeros (which also helps complexity)

Row Marginals

This solution is, again, an application of the GDL and its factor-graph representation is depicted in Fig. 4. More specifically, it consists in rumning the Viterbi algorithm the (l) Fig 5 oo the one in Fig. 5 .

Fig. 4: Factor-graph representation of the row-wise minimization problem.

Future Work

The GDL-based approach for this trivial structure wactly r active elements per active row) sugcests (exactly r active elements per active row) suggest vestigated: For instance, the sequence of active and inactive entries of an active row can be mapped onto a codeword of a given binary code.

Column Marginals

Since the row marginals only take two values (for $x_{m, l}=0$ and for $x_{m, l} \neq 0$), we see that problem (5) associates a cost $\phi_{i, l}^{\mathrm{r}}(0)$ to all entries $x_{i, l}=0$ and a cost $\lambda+\phi_{i, l}^{\mathrm{r}}(*)$ to all entries $x_{i, l} \neq 0$. Also, as far as the row problems (and our detection problem, in general) are concerned, we are not interested in characterizing the entire marginal $\phi_{m, l}^{c}\left(x_{m, l}\right)$ but we only need the values $\phi_{m, l}^{c}(0)$ problems (with $\mathbb{I}(\cdot)$ the indicator function) problems (with $\mathbb{I}(\cdot)$ the indicator function)

Numerical Results

$\phi_{m_{l}, l}^{\mathrm{c}}(0)=\min _{\left\{x_{i, l}\right\}_{i=1}^{H}} \frac{1}{2}\left\|\mathbf{y}_{l}-\mathbf{S} \mathbf{x}_{l}\right\|_{2}^{2}+\lambda\left\|\boldsymbol{x}_{\|}\right\|_{0}+\sum_{i \neq m} \phi_{i, l}^{\mathrm{r}}\left(x_{i, l}\right)+\mathbb{I}\left(x_{m, l}=0\right)$
$\phi_{m, l}^{\mathrm{e}}(*)=\min _{\left\langle x_{i, l},\right\}_{l=2}^{H}} \frac{1}{2}\left\|\mathbf{y}_{l}-\mathbf{S} \mathbf{x}_{l}\right\|_{2}^{2}+\lambda\left\|\mathbf{x}_{l}\right\|_{0}+\sum_{i \neq m} \phi_{i, l}^{\mathrm{r}}\left(x_{i, l}\right)+\mathbb{I}\left(x_{m, l} \neq 0\right)$.
The solution can be computed by means of Algorithm 1 .

We test our algorithms with the following setur

 Matrix S has size $N=40$ and $M=200$, and in unitary variance.The rows of the parameter matrix, X^{*}, The rows of the parameter matrix, ${ }^{*}$. have either
zero or $r=2$ active entries.
drawn fiome a entries are
 sian distribution.
AWGN matrix \mathbf{W} has Gaussian i.i.d. entries with
zero mean and variance $\operatorname{SNR} R^{-1}$. The regularizer parameters, λ and μ, have been
chosen to minimize support errors.

The proposed GDL-based approach outperforms
all other strategies by up to 25% !
is forced by a hard decision based on the highest

Algorithm 1: Modified OMP
$\boldsymbol{\rho}_{0} \leftarrow \mathbf{y}_{l}, i \leftarrow 0, \Omega_{0} \leftarrow \emptyset$
2: repeat
for all $j \notin \Omega_{i-1}$ do
$\quad \gamma_{j} \leftarrow \frac{1}{2}\left(\mathbf{s}_{j}^{\mathrm{T}} \boldsymbol{\rho}_{i-1}\right)^{2}+\phi_{j, l}^{\mathrm{r}}(0)-\phi_{j, l}^{\mathrm{r}}(*)-\lambda$
end for
$k_{i} \leftarrow \arg \max _{j} \gamma_{j}$
$\Omega_{i} \leftarrow \Omega_{i-1} \cup\left\{k_{i}\right\}$
$\boldsymbol{\rho}_{i} \leftarrow\left(\mathbf{I}_{N}-\mathbf{S}_{\Omega_{i}} \mathbf{S}_{\Omega_{i}}^{\dagger}\right) \mathbf{y}_{1}$
10. until $\gamma_{k_{i}}<0$
11: $\Omega_{*} \leftarrow \Omega_{i} \backslash\left\{k_{i}\right\}$

References

[1] M. E. Davies et al. "Rank awarness in joint sparse recovery," IEEE Trans.
Inf. Theory, vol. 58, no. 2. pp. $1135-1146$. Feb. 2012
 Mi/EEG imaging
vol. 70 , pp. $410-422$, Apr. 2013. [3] R. Jenatton et al. "Proximal method for hierarchical sparse coding," J.
Mach. Learn. Res., vol. 12, pp. 2297-2334, Jul. 2011. [4] R. G. Baraniuk et al, "Model-based compressive sensing," IEEE Trans.
Inf. Theory, vol. 56 , no. 4 , pp. 1 $1982-2001$, Apr. 2010." [5] J. Huang et al., "Learning with structured sparsity," J. Mach. Learn. Res,
vol. 12, pp. 3371 . 3412 , Nov. 2011. [6] S. M. Aji et al, "The generalized distributive law," IEEE Trans. Inf. The-
ory, vol. 46, no. 2 , pp. 325-343, Mar. 2000 . [7] F. R. Kschischang et al., "Factor graphs and the sum-product algorithm;
IEEE Trans. Inf. Theory, vol. 47 , no. 2, pp. 498 . 519 , Feb. 2001.

