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Problem Description

In this work we consider an underdetermined multi-measurement vector (MMV) linear
regression problem where the parameter matrix is row-sparse and where an additional
constraint fixes the number of nonzero elements in the active rows (see also Fig. 1). Even
if this additional constraint offers side structure information that could be exploited to
improve the estimation accuracy, it is extremely nonconvex and must be dealt with with
caution. A detection algorithm is proposed that capitalizes on compressed sensing results
and on the generalized distributive law (message passing on factor graphs).

Details

We consider the most classic MMV framework where the observation matrix, Y ∈ RN×L,
is modeled as the product of the sampling matrix, S ∈ RN×M , and the true parameter
matrix, X∗ ∈ RM×L, plus additive white Gaussian noise, W ∈ RN×L:

Y = SX∗ + W.

As introduced before, we are interested in the underdetermined problem where N < M .
Even if such problem is ill-conditioned, compressed sensing (CS) results show that X∗

can be recovered from Y with high accuracy under some mild assumptions on S as long
as X∗ is sparse. One possible solution is to approximate X∗ by

X̂ = arg min
X

1

2
‖Y − SX‖2

F + λ‖X‖1 (1)

with λ a real positive constant.
However, the model of Fig. 1 is characterized by a distinguishing sparsity structure, which
we would like to exploit to improve the estimate precision. Specifically, we consider the
case where the nonzero elements of X∗ are concentrated in few rows. Moreover, each of
these active rows has a fixed number of nonzero elements, namely r. In other words, for
each row r∗m ∈ RL of X∗, m = 1, 2, . . . ,M , we have the additional constraint that either

‖r∗m‖0 = 0 or ‖r∗m‖0 = r (2)

One readily sees that this constraint is nonconvex and should be handled with care.

= × +

Y S X∗ W

Fig. 1: Signal model of the considered MMV problem. Note that the parameter matrix is row-sparse and that active

rows show a fixed number of nonzero elements.

Literature Overview

To the best of our knowledge, none of the available solutions for structured sparse prob-
lems captures the specificities of this model. Nevertheless, we briefly comment on how
they can be employed to approximate the solution to the problem at hand.

Row Sparsity

The first approximation consists in solving the problem with tools designed for row-sparse
parameter matrices, (see, e.g., [1] and references therein).

Cons: Algorithms for row-sparse matrices are indifferent to row structure and typically
return rows with all active entries. An extra step is needed to enforce the required
structure (e.g., hard thresholding to select the r entries with highest magnitude).

Composite Regularizer

A slightly more sophisticated solution consists in relaxing (1) subject to (2) into

X̂ = arg min
X

1

2
‖Y − SX‖2

F + λ‖X‖1 + µ‖X‖2,1 (3)

with λ, µ > 0. The purpose of the `2,1 regularizer, namely

‖X‖2,1 =

M∑
m=1

√√√√ L∑
l=1

x2
m,l

is to promote row sparsity. Together with the classic `1 regularizer, the resulting estimate,
X̂, will show few active rows, each one with few active entries [2] (see also Fig. 2).

Pros: Problem (3) is convex and efficient; scalable algorithms exist for its solution.

Cons: The rows of the estimate, X̂, do not necessarily meet the structure constraints.
Extra steps (hard decisions) may be required.
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Fig. 2: Combined effects of the `1 and `2,1 regularizers on the solution to (3).

Other Solutions

Other works in the literature allow for a more accurate characterization of the sparsity
structure [3–5]. All these solutions, however, require an exhaustive search over the atoms
of the sparsity model: This can be a severe limitation for the problem at hand where
each row shows

(
L
r

)
different activation patterns.

Proposed GDL-Based Approach

When dealing with sparsity structure, a number of works suggest that
greedy algorithms are a better option. Indeed, convex continuous
methods may not be able to induce an explicit distinction between
active and inactive entries. Then, we replace (1) by

X̂ = arg min
X

1

2
‖Y − SX‖2

F + λ‖X‖0 s. to (2). (4)

By noting that the objective function can be decoupled along the
columns of X, that is

1

2
‖Y − SX‖2

F + λ‖X‖0 =
1

2

L∑
l=1

‖yl − Sxl‖2
2 + λ‖xl‖0

we see that each entry xm,l of X relates to only one of the column
terms above and only one of the row structure constraints in (2), as
depicted in the factor graph of Fig. 3. Then, we propose to solve prob-
lem (4) by means of an iterative min-sum message-passing algorithm
that alternates between column problems and row problems. In other
words, we apply the Generalized Distributive Law (GDL) [6, 7].
More specifically, the column-l-to-row-m message φc

m,l(xm,l) is the col-
umn marginal

φc
m,l(xm,l) = min

{xi,l}i6=m

1

2
‖yl − Sxl‖2

2 + λ‖xl‖0 +
∑
i 6=m

φr
i,l(xi,l) (5)

while

φr
m,l(xm,l) = min

{xm,j}j 6=l

∑
j 6=l

φc
m,j(xm,j) s. to (2) (6)

is the row marginal that propagates from row m to column l.

(‖r1‖0 = 0) ∨ (‖r1‖0 = r)
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1 2
‖y

1
−

S
x
1
‖2 2

+
λ
‖x

1
‖ 0

1 2
‖y

L
−

S
x
L
‖2 2

+
λ
‖x

L
‖ 0

x1,1 x1,L

xm,1 xm,L

xM,1 xM,L

φr1,1

φrm,1

φrM,1

φr1,L

φrm,L

φrM,L

φc1,1

φcm,1

φcM,1

φc1,L

φcm,L

φcM,L

Fig. 3: Factor-graph representation of problem (4). Each row block can be further represente

by the factor graph in Fig. 4.

Pros: This approach promotes the desired structure.

Cons: The number of cycles is huge, jeopardizing convergence.
Quick fix: ignore rows where all column problems return zeros (which
also helps complexity).

Row Marginals

For each row m, let us introduce the set of hid-
den state variables σm,l ∈ {0, 1, . . . , r}, with l =
0, 1, . . . , L, and define the state transition according
to

σm,0 = 0

σm,l = σm,l−1 + ‖xm,l‖0.

Moreover, the cost associated to the transition
is φc

m,l(xm,l).
Then, row problem (6) is equivalent to finding the
most likely (minimum cost) sequence of hidden
states σm,l (l = 0, 1, . . . , L) that leads to either
σm,L = 0 or σm,L = r from σm,0 = 0.
The row marginals φr

m,l(xm,l) are

φr
m,l(xm,l) = min

{xm,j}j 6=l

∑
j 6=l

φc
m,j(xm,j)

subject to xm,1, xm,2, . . . , xm,L correspond-
ing to a feasible sequence of hidden states.

Note that, since the state transition only depends on
whether xm,l = 0 or not (and not on the specific value
taken by xm,l), the row marginals can only take two
values, namely

φr
m,l(xm,l) =

{
φr
m,l(0) if xm,l = 0

φr
m,l(∗) if xm,l 6= 0.

This solution is, again, an application of the GDL and its
factor-graph representation is depicted in Fig. 4. More
specifically, it consists in running the Viterbi algorithm
twice (left to right and right to left) on a trellis similar
to the one in Fig. 5.
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Fig. 4: Factor-graph representation of the row-wise minimization problem.
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Fig. 5: Trellis representation of the row-wise minimization problem.

Future Work

The GDL-based approach for this trivial structure
(exactly r active elements per active row) suggests
that other more complex row structures can be in-
vestigated: For instance, the sequence of active and
inactive entries of an active row can be mapped onto
a codeword of a given binary code.

Column Marginals

Since the row marginals only take two values (for xm,l = 0 and for xm,l 6= 0), we see that problem
(5) associates a cost φr

i,l(0) to all entries xi,l = 0 and a cost λ + φr
i,l(∗) to all entries xi,l 6= 0.

Also, as far as the row problems (and our detection problem, in general) are concerned, we are
not interested in characterizing the entire marginal φc

m,l(xm,l) but we only need the values φc
m,l(0)

and φc
m,l(∗) = minxm,l 6=0 φ

c
m,l(xm,l), which can be computed by solving the following equivalent

problems (with I(·) the indicator function)

φc
m,l(0) = min

{xi,l}Mi=1

1

2
‖yl − Sxl‖2

2 + λ‖xl‖0 +
∑
i 6=m

φr
i,l(xi,l) + I(xm,l = 0)

φc
m,l(∗) = min

{xi,l}Mi=1

1

2
‖yl − Sxl‖2

2 + λ‖xl‖0 +
∑
i 6=m

φr
i,l(xi,l) + I(xm,l 6= 0).

The solution can be computed by means of Algorithm 1.

Numerical Results

We test our algorithms with the following setup.

• Matrix S has size N = 40 and M = 200, and in-
dependent Gaussian entries with zero mean and
unitary variance.

• The rows of the parameter matrix, X∗, have either
zero or r = 2 active entries. Active entries are
drawn from a zero-mean, unitary-variance Gaus-
sian distribution.

• AWGN matrix W has Gaussian i.i.d. entries with
zero mean and variance SNR−1.

• The regularizer parameters, λ and µ, have been
chosen to minimize support errors.

• We run the algorithms 1000 times (all with differ-
ent S, X∗ and W) and we track perfect detection
(i.e., the algorithm activates the right rows and
the right entries), row-only detection (i.e., the al-
gorithm selects the correct row but not the correct
entries), missed detection (i.e., the algorithm fails
to detect a row) and false detection (i.e., the al-
gorithm selects an inactive row), all normalized
w.r.t. the total number of active rows.

• For algorithms marked with HD, constraint (2)
is forced by a hard decision based on the highest
entry magnitudes.

The proposed GDL-based approach outperforms
all other strategies by up to 25%!
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Algorithm 1: Modified OMP

1: ρ0 ← yl, i← 0, Ω0 ← ∅
2: repeat
3: i← i + 1
4: for all j /∈ Ωi−1 do
5: γj ← 1

2(sT
j ρi−1)2 + φr

j,l(0)− φr
j,l(∗)− λ

6: end for
7: ki ← arg maxj γj
8: Ωi ← Ωi−1 ∪ {ki}
9: ρi ← (IN − SΩiS

†
Ωi

)yl
10: until γki < 0
11: Ω∗ ← Ωi \ {ki}
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