IMAGE REFLECTION REMOVAL USING THE WASSERSTEIN GENERATIVE ADVASARIAL NETWORK
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Objectives Shortcomings of the current methods Comparisons and evaluations

1.Removing th‘? reflection oflmag.e taken | | A BN * Single-image reflection removal algorithms (such as CEILNet):
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2.Improved over the existing CNN based |-_—~ = FCEH_N! . * Therefore, they cannot remove sharp reflection components.
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* Multiple-image reflection removal algorithms (such as LS-SIFTF):
* They need to estimate the different motions of the background and

methods in terms of robustness.

* However, the motions become ambiguous after two images are
superimposed.

based methods in terms of efficiency.
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Input images * The network for unambiguous edge disparity estimation:

Motivation: The background and reflection images usually have different
disparity ranges, which can help us sperate the background and reflection
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2. We use an edge emphasized disparity estimation network for Disparity network e gy e gy it -
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estimating disparity values on image edges. Input _—
* The WGAN trained for background edge regeneration: P
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Background Problem: The disparity ranges of background and e T
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2. Send those edges to a WGAN for regenerating complete background edges. - |
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3. The adversarial terms Lgdvl and Lgdvz for background and reflection edges || o 51 w5 | 1S-DS ©  CEILNet PLNet
respectively in the WGAN can force the estimated edges to better follow Discriminat
Background 'mage distributions of natural image edges. Seriminator PSNR values of
rec‘;gi&g:ﬁ'on * Another WGAN trained for background image reconstruction: Method Background  |Ave. Time
Motivation: 1. Improving the speed over traditional optimization-based approaches. — results
o , o o - Original images 13.09 NA
2. Obtaining better performance via exploiting the strong prediction ability of DNN. However, a
. LS-LFGS 21.71 69.51s
normal L2 norm pixel loss term may lead to a blurry result. T SIFTF 1391 130,50+
Solution: 1. Use a VGG perceptual feature term L5 to improve the - '
min max L2, +2,L8 + A5(LE,, + L5, ) o g L5-DS 18.85 17.01s
G D, D, Tec 2°~p 3\~adv, adv; perceptual similarity between the background result and ground CEILNet 17 71 0 825
Background image truth. PLNet 19.09 1.15s
2. Use the adversarial terms Lgdvl and Lgdvz to guide the background result to better follow natural image distributions. §|proposed 24.22 1.08s




