

Multicarrier radar-communications waveform design for RFconvergence and coexistence

Marian Bică and Visa Koivunen Aalto University, Finland

International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2019


RF Convergence

- Using the same platform for multiple uses
 - Radar and communications tasks
- Different approaches:
 - > Tasks are performed sequentially (time division)
 - > Tasks are performed simultaneously by exploiting different DoFs:
 - Frequency
 - o Antenna elements
 - Radiation patterns (comms or radar in sidelobes)
 - ➤ Integrated waveforms (one waveform for both tasks, e.g. embedding data symbols into the radar waveform → very common)

Proposed approach

• Use multicarrier waveforms for which interleaved subcarriers or subsets of subcarriers can be assigned to different tasks

- Objectives:
 - > Devise a strategy to assign subcarriers to either task
 - Optimize the power use for each task

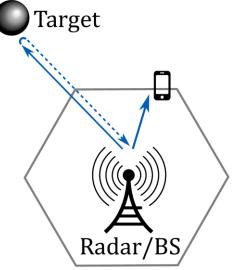
Performance metric

- Mutual Information (MI) is chosen as the performance metric for our objectives
- Is MI a suitable metric?
 - ➢ For comms it is directly related to the capacity

 $C = \max I(X; Y), \quad X - \text{Channel input}, Y - \text{Channel output}$

For radar MI maximization has been connected to minimum mean square error (MMSE) and was shown to also provide waveforms with good detection properties

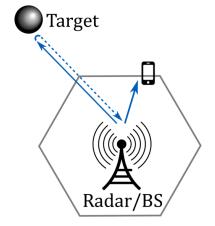
max I(Y; H), Y – Received signal, H – Target impulse response



System model

- A dual-use radar-communications OFDM waveform is considered
- Waveform is reflected off the target and received by the communications user
- Waveform can be modeled as follows:

$$\mathbf{x} = \mathbf{F}^H[\mathbf{W}\mathbf{r} + (\mathbf{I} - \mathbf{W})\mathbf{c}],$$


- \mathbf{F}^H IDFT matrix
- $\mathbf{W} N \times N$ diagonal subcarrier selection matrix (0s and 1s)
- **r** Radar transmitted symbols
- \mathbf{c} Communications transmitted symbols

Compound objective function

• A compound MI based objective function is formulated for subcarrier assignment and optimum power allocation

$$\underbrace{I(\mathbf{y}_{r}; \mathbf{h}_{r})}_{\text{radar MI}} + \underbrace{I(\mathbf{y}_{c}; \mathbf{x})}_{\text{comms MI}}, \\ \mathbf{y}_{r} - \text{Signal at the radar receiver} \\ \mathbf{h}_{r} - \text{Target impulse response} \\ \mathbf{y}_{c} - \text{Signal at the communications receiver} \\ \mathbf{x} - \text{Transmitted dual-use waveform} \\ \frac{1}{2} \left[\sum_{k=0}^{N-1} \log \left(1 + \frac{\mathbf{w}^{2}[k]|\mathbf{r}[k]|^{2}\sigma_{h_{r}}^{2}[k]}{\mathbf{u}^{2}[k]|\mathbf{c}[k]|^{2}\sigma_{h_{r}}^{2}[k] + \sigma_{n}^{2}} \right) + \sum_{k=0}^{N-1} \log \left(1 + \frac{\mathbf{u}^{2}[k]|\mathbf{c}[k]|^{2}\sigma_{h_{c}}^{2}[k] + \sigma_{n}^{2}}{\mathbf{w}^{2}[k]|\mathbf{r}[k]|^{2}\sigma_{h_{c}}^{2}[k] + \sigma_{m}^{2}} \right) \\ \end{aligned}$$

Compound objective function

For any kth subcarrier only w or u can be non-zero, thus the objective function can be simplified as follows:

$$\frac{1}{2} \begin{bmatrix} \sum_{k=0}^{N-1} \log\left(1 + \frac{\mathbf{w}[k]|\mathbf{r}[k]|^2 \sigma_{h_r}^2[k]}{\sigma_n^2}\right) + \sum_{k=0}^{N-1} \log\left(1 + \frac{\mathbf{u}[k]|\mathbf{c}[k]|^2 \sigma_{h_c}^2[k]}{\sigma_m^2}\right) \end{bmatrix}, \\ \mathbf{w}[k] \quad - \quad \text{Radar weight on } k\text{th subcarrier - } \{0, 1\}$$

- Kadar weight on kth subcarrier $\{0, 1\}$
- Comms weight on kth subcarrier $\{0, 1\}$ $\mathbf{u}[k]$ $egin{aligned} oldsymbol{\sigma}_{h_r}^2[k] \ oldsymbol{\sigma}_{h_c}^2[k] \ \sigma_n^2 \ \sigma_m^2 \end{aligned}$
 - Radar channel gain on kth subcarrier ____
 - Comms channel gain on kth subcarrier
 - Noise power @ radar receiver
 - Noise power @ comms receiver

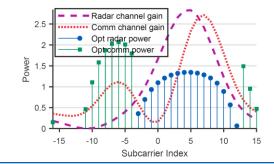
Proposed design algorithms

• Two design algorithms are proposed:

- "Radar selfish design"
- "Cooperative design"

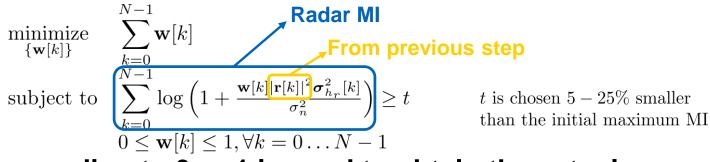
• A brief description of the two algorithms:

"Radar selfish design"	"Cooperative design"
▷Radar receives all subcarriers	▷ Allocate subcarriers to either
	subsystem based on MI objective
\triangleright Optimize radar power based on MI objective	\triangleright Optimize power for each subsystem
\triangleright Allocate unused subcarriers to comms. subsystem	
\triangleright Minimize the number of radar subcarriers	
based on some allowed loss of radar MI	
\triangleright Obtain final allocation of subcarriers	
\triangleright Optimize power for each subsystem	

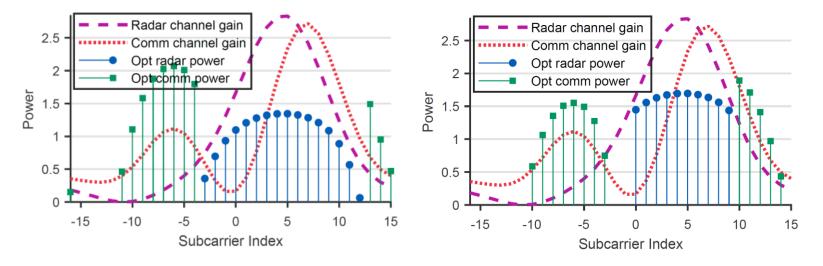


- Radar power allocation optimization is formulated as:
 - $\begin{array}{ll} \underset{\{|\mathbf{r}[k]|^2\}}{\text{maximize}} & \sum_{k=0}^{N-1} \log \left(1 + \frac{\mathbf{w}[k] |\mathbf{r}[k]|^2 \sigma_{h_T}^2[k]}{\sigma_n^2} \right) \leftarrow \text{Radar MI} \\ \text{subject to} & \sum_{k=0}^{N-1} \mathbf{w}[k] |\mathbf{r}[k]|^2 \leq P_{\mathrm{T}} & \leftarrow \text{Total radar power budget} \end{array}$
- Comms power allocation optimization is formulated as:

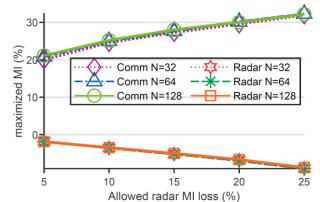
$$\begin{array}{ll} \underset{\{|\mathbf{c}[k]|^2\}}{\text{maximize}} & \sum_{k=0}^{N-1} \log \left(1 + \frac{\mathbf{u}[k] |\mathbf{c}[k]|^2 \sigma_{h_c}^2[k]}{\sigma_m^2} \right) & \leftarrow \text{ Comms MI} \\ \text{subject to} & \sum_{k=0}^{N-1} \mathbf{u}[k] |\mathbf{c}[k]|^2 \leq P_{\mathrm{T}} & \leftarrow \text{ Total comms power budget} \end{array}$$



- Both optimization problems can be solved exactly and their solutions are water filling solutions
- Subcarriers with higher channel gain and low noise and interference power receive more power
- Example of power allocation for both subsystems before minimizing the number of radar subcarriers


- Minimizing the number of radar subcarriers is done so that comms can receive more subcarriers
- This problem is **non-convex** (*l*₀-norm minimization)
- The best convex approximation is used (l₁-norm minimization)

- A rounding to 0 or 1 is used to obtain the actual w
- Iterate until no change in w



 An example of subcarrier allocation and power optimization for both subsystems at the initial and final steps

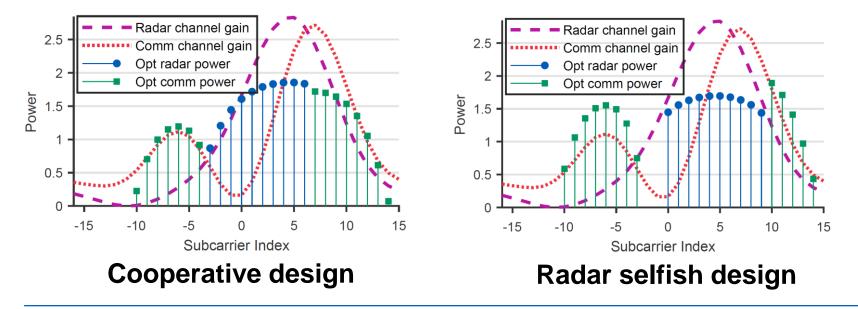
- This design involves a trade-off between MI loss for radar and MI gain for the communications subsystems
- The average MI change from first to last step of the algorithm for different number of subcarriers (500 channel realizations)

shows that *it pays off* to allow a small decrease in radar maximized MI for a larger comms maximized MI \rightarrow higher capacity

Cooperative design

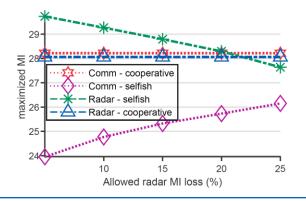
- Subcarriers are assigned to the radar or the comms subsystem based on maximizing the compound objective
- The objective can be further simplified to:

$$\frac{1}{2} \left[\sum_{k=0}^{N-1} \log \left(1 + \frac{\mathbf{w}[k] \sigma_{h_r}^2[k]}{\sigma_n^2} + \frac{\mathbf{u}[k] \sigma_{h_c}^2[k]}{\sigma_m^2} \right) \right]$$


• It turns out the optimum w and u are given by:

$$\begin{cases} \text{If } \frac{\sigma_{h_c}^2[k]}{\sigma_m^2} > \frac{\sigma_{h_r}^2[k]}{\sigma_n^2} & \text{then } \mathbf{w}[k] = 0, \mathbf{u}[k] = 1\\ \text{If } \frac{\sigma_{h_c}^2[k]}{\sigma_m^2} \le \frac{\sigma_{h_r}^2[k]}{\sigma_n^2} & \text{then } \mathbf{w}[k] = 1, \mathbf{u}[k] = 0 \end{cases}$$

 Subcarriers go to the subsystems that experience larger "chanel to noise" ratio


Cooperative design

 Example of final power allocation for both subsystems, which is different than for the first design algorithm

Radar selfish vs cooperative design

- Comparing the maximized MI achieved using both strategies
 - Cooperative design is favorable to the comms subsystem as expected
 - Radar selfish design is favorable to the radar subsystem as long as there is not too much MI loss allowed

