

Energy optimization on MPSoC with convex framework E. Nogues, A. Mercat, F. Arrestier, M. Pelcat, D. Menard, T. Amestoy UEB - INSA Rennes - IETR, France

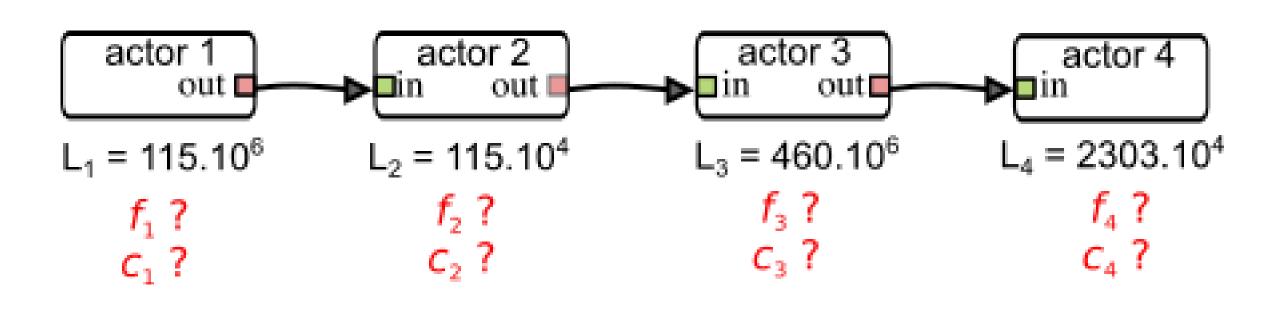
Context and motivations

- Energy optimization in modern MPSoCs
 - Availability of advanced power management techniques
 - Dynamic Voltage and Frequency Scaling (DVFS)
 - Dynamic Power Management (DPM)
- Objective : provide guidelines gathering in a single framework
 - Real-time requirements
 - Low power mechanisms
 - Frequency scaling and deep sleep modes

Final Optimization Problem

Not-perfect scaling

$$\begin{array}{ll} \underset{f_{i},c_{i}}{\text{minimize}} & \sum_{i=1}^{N} \frac{L_{i}}{k_{0} c_{i}^{0.25}} (a_{0} \frac{1}{f_{i}} + a_{1} \sqrt{f_{i}} c_{i}^{1.5} + a_{2} + a_{3} f_{i}^{2} c_{i} + a_{4} f_{i}^{6} c_{i}) \\ \text{subject to} & \sum_{i=1}^{N} \frac{L_{i}}{k_{0} c_{i}^{0.25}} \cdot \frac{1}{f_{i} f_{max}} \leq D \\ & f_{i} \geq \frac{f_{min}}{f_{max}}, f_{i} \leq 1 \\ & c_{i} \geq \frac{c_{min}}{f_{max}}, c_{i} \leq 1 \end{array}$$


• Parallel programming and application scheduling properties

Optimization Problem in the General Case

• Minimization of the total energy E_{tot} under real-time constraint D

 $\min_{f,c} E_{tot}(f,c) \qquad \text{subject to} \qquad T_{tot} \leq D$

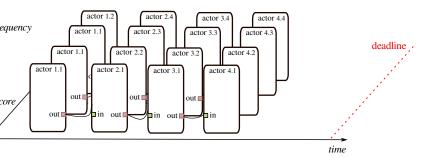
- f : processing frequency , $f_{min} \le f \le f_{max}$
- *c* : **number of cores**, $c_{min} \le c \le c_{max}$
- T_{tot} : application execution time
- D : deadline
- Optimization Problem for Streaming Signal Processing Apps
 - Sequence of N actors with a known load $L_{i|i=1..N}$ in cycle count

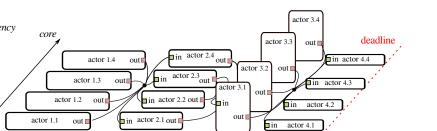
c_{max}

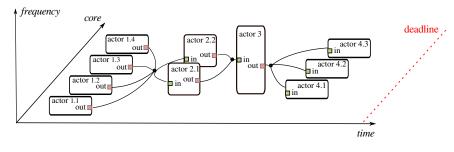
$a_{0..4} = [0.0313, 0.2057, 0.0815, 0.2515, 0.1242]$

Geometric Programming

Transform to convex optimization problem via change of variables
→ Use of logarithm with Geometric Programming


Experiment on a streaming application with 4 actors


• 3 configurations have been tested


As-Fast-As-Possible scheduling

As-Slow-As-possible scheduling

proposed scheduling

Loose Scheduling - Deadline = 1.2

PerfectTime (s)Norm'd Freq.Norm'd CoresEnergy (J|norm)ASAP0.60[0.4 0.4 0.4 0.4][1.0 1.0 1.0 1.0]0.2269 | 1.000AFAP0.25[1.0 1.0 1.0 1.0][1.0 1.0 1.0 1.0]0.2191 | 0.965

⇒ Find the best frequency f_i and parallelism level c_i for each actor *i* • Use of normalized values ([0,1]) for f_i and c_i

Total execution time model

$$T_{tot} = \sum_{i=1}^{N} \frac{L_i}{f_i \cdot S_i(c_i)}$$

• S_i Speed-up model for actor i

• Perfect speed-up : $S_i(c_i) = c_i N_c$ with N_c the maximal number of cores • Not-perfect speed-up model : $SU(c) = k_0 c^{0.25}$ with k_0 from the app.

Energy model

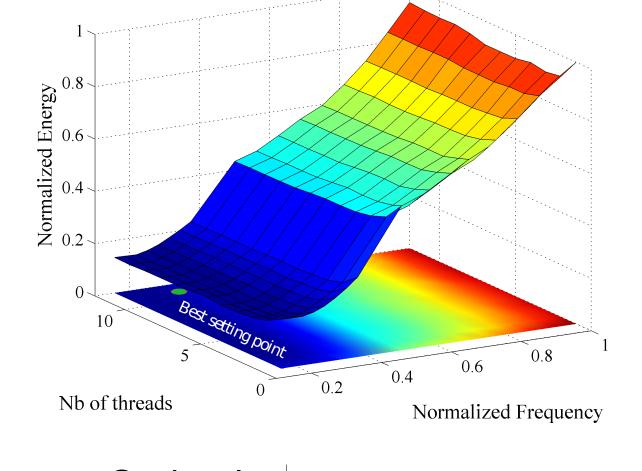
Total Energy model

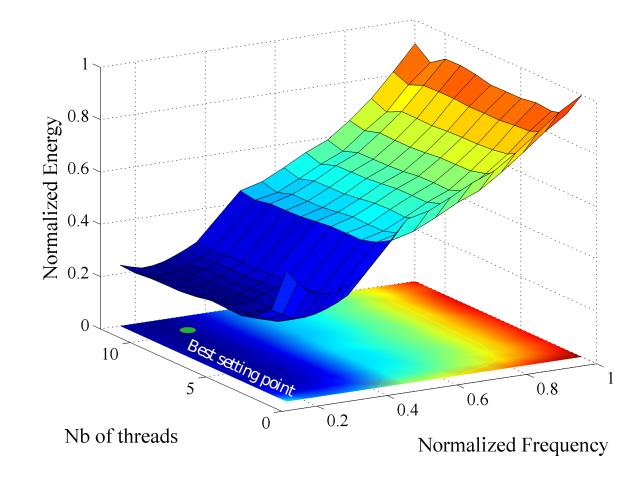
$$\sum_{i=1}^{N} \frac{L_i}{f_i \cdot S_i(c_i)} \cdot E_{cycle}(f_i, c_i)$$

• Energy per cycle count (DPM) processing at *f* (DVFS) on *c* cores in parallel

$$E_{cycle}(\boldsymbol{f}, \boldsymbol{c}) = \frac{1}{T.\boldsymbol{f}} \cdot \int_0^T P_{tot}(t, \boldsymbol{f}, \boldsymbol{c}) \, \mathrm{d}t$$

Our method 0.44 [0.5 0.5 0.5 0.5] [1.0 1.0 1.0 1.0] 0.1976 | 0.870

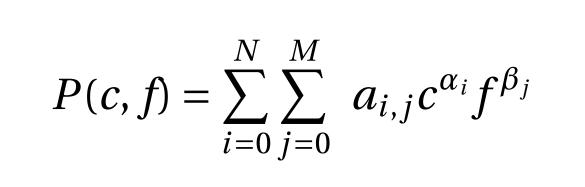

Not-Perfect


	Time (s)	Norm'd Freq.	Norm'd Cores	Energy (J norm)
ASAP	1.20	[0.4 0.4 0.4 0.4]	[1.0 1.0 1.0 1.0]	0.4538 1.000
AFAP	0.50	[1.0 1.0 1.0 1.0]	[1.0 1.0 1.0 1.0]	0.4381 0.965
Our Method	0.82	[0.7 0.7 0.7 0.7]	$[0.4 \ 0.4 \ 0.4 \ 0.4]$	0.3563 0.785

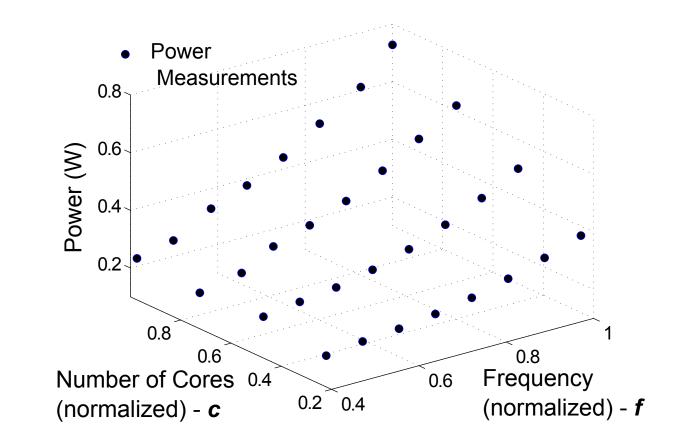
Experiments on offline HEVC decoder

Random Access profile - Core Energy

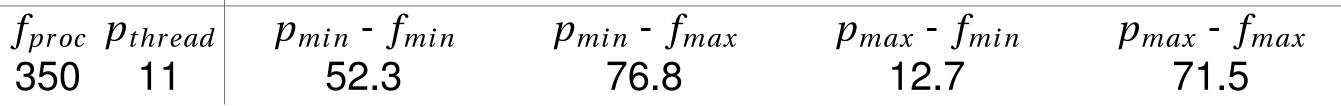
Random Access profile - Total Energy



Optimal


Gains (%)

 \Rightarrow Energy model has convexity properties


- Polynomial approximation of the power from measured data
 - Curve fitting with linear regression
 - Constrain the energy model as a posynomial

• $a_{i,j} \in \mathbb{R}_+, \ \alpha_i \in \mathbb{R}, \ \beta_j \in \mathbb{R}.$

Platform : Exynos 5420

Conclusion

• Frequency scaling, Deep Sleep modes and Parallelization level can be jointly optimized wrt :

- Real-time requirements
- Low power characteristics of the platform
- Parallel programming and scheduling properties of the app.

Gains compared to traditional approaches

