A Deep Generative Model of Speech Complex Spectrograms

Aditya Arie Nugraha^{*} Kouhei Sekiguchi^{†*} Kazuyoshi Yoshii†*

* Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo 103-0027, Japan Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

MOTIVATION

• Probabilistic approaches to speech enhancement [1,2]: VAE as a prior of the speech *power* spectrograms

- How about a prior of *complex* spectrograms..? It might allow a better speech enhancement.
- Phase recovery approaches typically assume the magnitude is known, e.g., the Griffin-Lim algorithm and some DNN-based methods [3,4]
- •Let's develop a latent variable model for

IDEA

- Phase derivatives:
- -Group delay (GD): the derivative along the frequency axis

 $\psi_{f,n}^{\text{grd}} = \operatorname{wrap}(-\psi_{f+1,n} + \psi_{f,n})$

- -Instantaneous frequency (IF): the derivative along the time axis $\psi_{f,n}^{\text{ifr}} = \operatorname{wrap}(\psi_{f,n+1} - \psi_{f,n})$
- Let's exploit the interdependence be-

speech complex spectrogram generation!

tween the phase, the GD, and the IF!

PROPOSED METHOD

• Model formulation:

 $p_{\theta}(\boldsymbol{\psi}_n, \mathbf{a}_n, \mathbf{Z}_n) = p_{\theta^{\psi}}(\boldsymbol{\psi}_n | \mathbf{a}_n, \mathbf{Z}_n) p_{\theta^a}(\mathbf{a}_n | \mathbf{Z}_n) p_{\theta}(\mathbf{Z}_n)$ (1)

• The model parameters are estimated by minimizing the negative log-likelihood (NLL):

 $-\ln \int_{\mathbf{Z}} p_{\theta}(\boldsymbol{\psi}_n, \mathbf{a}_n, \mathbf{z}_n) \, \mathrm{d}\mathbf{z}_n$ $= -\ln \int_{\mathbf{z}} \frac{q_{\phi}(\mathbf{z}_n | \boldsymbol{\psi}_n, \mathbf{a}_n)}{q_{\phi}(\mathbf{z}_n | \boldsymbol{\psi}_n, \mathbf{a}_n)} p_{\theta}(\boldsymbol{\psi}_n, \mathbf{a}_n, \mathbf{z}_n) \, \mathrm{d}\mathbf{z}_n$ $\leq -\mathbb{E}_{q_{\phi}(\mathbf{Z}_n|oldsymbol{\psi}_n,\mathbf{a}_n)} \left| \ln rac{p_{ heta}(oldsymbol{\psi}_n,\mathbf{a}_n,\mathbf{Z}_n)}{q_{\phi}(\mathbf{Z}_n|oldsymbol{\psi}_n,\mathbf{a}_n)}
ight|$ $= \mathrm{KL}[q_{\phi}(\mathbf{Z}_n | \boldsymbol{\psi}_n, \mathbf{a}_n) | | p_{\theta}(\mathbf{Z}_n)]$ $- \mathbb{E}_{q_{\phi}(\mathbf{z}_{n}|\boldsymbol{\psi}_{n},\mathbf{a}_{n})} [\ln p_{\theta^{a}}(\mathbf{a}_{n}|\mathbf{z}_{n})]$ $-\mathbb{E}_{q_{\phi}(\mathbf{z}_{n}|\boldsymbol{\psi}_{n},\mathbf{a}_{n})}\left[\ln p_{\theta^{\psi}}(\boldsymbol{\psi}_{n}|\mathbf{a}_{n},\mathbf{z}_{n})
ight]$ $\triangleq \mathcal{L}^{\mathrm{reg}} + \mathcal{L}^{\mathrm{mag}} + \mathcal{L}^{\mathrm{pha}}$ (2)

• Assuming a simple prior $p_{\theta}(\mathbf{z}_n) \sim \mathcal{N}(\mathbf{z}_n | \mathbf{0}, \mathbf{I})$, the regularization term \mathcal{L}^{reg} :

- The magnitude follows a Gaussian distribution:
 - $a_{f,n} \sim \mathcal{N}\left(a_{f,n} \middle| \mu_{f,n}^{\text{mag}}, (\sigma_{f,n}^{\text{mag}})^2\right)$
- The magnitude reconstruction loss \mathcal{L}^{mag} is the NLL:

$$\mathcal{L}^{\text{mag}} = \frac{1}{2N} \sum_{f,n} \left(\ln 2\pi \left(\widehat{\sigma}_{f,n}^{\text{mag}} \right)^2 + \frac{\left(a_{f,n} - \widehat{a}_{f,n} \right)^2}{\left(\widehat{\sigma}_{f,n}^{\text{mag}} \right)^2} \right)$$
(5)

• The phase follows a von Mises distribution:

 $\psi_{f,n} \sim \mathcal{VM}\left(\psi_{f,n} \middle| \mu_{f,n}^{\text{pha}}, \kappa_{f,n}^{\text{pha}} \right)$

- The phase reconstruction loss \mathcal{L}^{pha} is the NLL: $\mathcal{L}^{\text{pha}} = \frac{1}{N} \sum_{\epsilon} \left(\ln 2\pi I_0 \left(\widehat{\kappa}_{f,n}^{\text{pha}} \right) - \widehat{\kappa}_{f,n}^{\text{pha}} \cos \left(\psi_{f,n} - \widehat{\psi}_{f,n} \right) \right)$ (7)
- Additionally, each of the GD and the IF also follows a von Mises distribution.
- The GD and the IF reconstruction losses (\mathcal{L}^{grd} and \mathcal{L}^{ifr})

Encoder: $q_{\phi}(\mathbf{z}_n | \boldsymbol{\psi}_n, \mathbf{a}_n)$

(4)

(6)

Decoders: $p_{\theta^a}(\mathbf{a}_n | \mathbf{z}_n)$, $p_{\theta^\psi}(\boldsymbol{\psi}_n | \mathbf{a}_n, \mathbf{z}_n)$

- The model is based on the DenseNets design [5], mainly consisting of convolutional layers (see the paper for the details).
- The model training is done in two stages:

$$\mathcal{L}^{\text{reg}} = \frac{1}{2N} \sum_{d,n} \left(\left(\mu_{d,n}^q \right)^2 + \left(\sigma_{d,n}^q \right)^2 - \ln \left(\sigma_{d,n}^q \right)^2 - 1 \right)$$
(3)

EVALUATION

- Task: speech reconstruction
- Performance metrics:
- Mean Opinion Score (MOS), mapped from Perceptual Evaluation of Speech Quality (PESQ) score
- Short-Time Objective Intelligibility (STOI)
- Corpus: CHiME-4
- all data are sampled at 16 kHz
- only the clean speech of the channel 5 from the simulated datasets
- -subsets:
- * training set: 7138 utts. (\pm 15.0 hours) * dev. set: 1640 utts. (± 2.9 hours) * test set: 1320 utts. (\pm 2.3 hours)

• STFT analysis parameters:

are defined similarly to \mathcal{L}^{pha} .

• Concentration parameters: $\hat{\kappa}_{f,n}^{\text{pha}} = \hat{\kappa}_{f,n}^{\text{grd}} = \hat{\kappa}_{f,n}^{\text{ifr}} = \hat{a}_{f,n} + 1$

- Stage 1 aims for a good magnitude estimation
- -Stage 2 aims for a good phase and magnitude estimation

for the different training loss functions.						
Model	Loss function	$\widehat{\mathbf{a}}_n$	$\widehat{\boldsymbol{\psi}}_n$	$\widehat{oldsymbol{\psi}}^{ extsf{grd}}_n$	$\widehat{oldsymbol{\psi}}_n^{ ext{ifr}}$	
(M)	$\mathcal{L}^{reg} + \mathcal{L}^{mag} + \mathcal{L}^{var}$	1400	-1204	-1204	-1204	
(J1)	(M) + <i>L</i> ^{pha}	1366	-964	-712	-954	
(J2)	(M) + \mathcal{L}^{grd}	1435	-1201	-60 7	-1201	
(J3)	(M) + \mathcal{L}^{ifr}	1401	-1198	-1198	-800	
(J4)	(M) + $\frac{1}{2}\mathcal{L}^{\text{pha}}$ + $\frac{1}{2}\mathcal{L}^{\text{grd}}$	1420	-1053	-635	-1054	
(J5)	(M) + $\frac{1}{2}\mathcal{L}^{\text{pha}}$ + $\frac{1}{2}\mathcal{L}^{\text{ifr}}$	1399	-1191	-1194	-826	
(J6)	(M) $+ \frac{1}{2}\mathcal{L}^{\text{grd}} + \frac{1}{2}\mathcal{L}^{\text{ifr}}$	1409	-1198	-671	-894	
(J7)	(M) + $\frac{1}{3}\mathcal{L}^{\text{pha}}$ + $\frac{1}{3}\mathcal{L}^{\text{grd}}$ + $\frac{1}{3}\mathcal{L}^{\text{ifr}}$	1403	-1196	-690	-908	

Average log-likelihood on the test set

Average objective perceptual performance on the test set for the different training loss functions.

	0		
Model	Loss function	MOS	STOI
(M)	$\mathcal{L}^{reg} + \mathcal{L}^{mag} + \mathcal{L}^{var}$	1.96	0.690
(J1)	(M) + \mathcal{L}^{pha}	3.34	0.770
(J 2)	(M) + \mathcal{L}^{grd}	2.18	0.734
(J3)	(M) + \mathcal{L}^{ifr}	2.51	0.702
(J4)	(M) + $\frac{1}{2}\mathcal{L}^{\text{pha}}$ + $\frac{1}{2}\mathcal{L}^{\text{grd}}$	3.71	0.786
(J5)	(M) + $\frac{1}{2}\mathcal{L}^{\text{pha}}$ + $\frac{1}{2}\mathcal{L}^{\text{ifr}}$	2.39	0.690
(J6)	(M) $- + \frac{1}{2}\mathcal{L}^{\text{grd}} + \frac{1}{2}\mathcal{L}^{\text{ifr}}$	3.54	0.777
(J7)	(M) + $\frac{1}{3}\mathcal{L}^{\text{pha}}$ + $\frac{1}{3}\mathcal{L}^{\text{grd}}$ + $\frac{1}{3}\mathcal{L}^{\text{ifr}}$	3.13	0.766

- –512-point Hann window (75% overlap)
- –1024-point DFT

time frames	time frames
(a) True speech	(b) Reconstruction <mark>(J4)</mark>

Utt. ID: F05_440C020I_PED from the set et05_ped_simu

CONCLUSION

- The proposed method can reproduce time-domain speech with a high quality and a high intelligibility. Audio samples are available on the demo webpage: https://aanugraha.gitlab.io/demo/icassp19/.
- Good phase derivatives are sufficient to obtain a fair speech quality.
- The phase derivative optimization strongly drives the overall optimization and thus, a more elaborate weighting might be necessary.
- Future works include (1) estimating the von Mises concentration parameters, and (2) utilizing the model for speech enhancement.

References

- [1] Y. Bando, M. Mimura, K. Itoyama, K. Yoshii, and T. Kawahara, "Statistical speech enhancement based on probabilistic integration of variational autoencoder and non-negative matrix factorization," IEEE ICASSP '18,
- [2] S. Leglaive, L. Girin, & R. Horaud, "A variance modeling framework based on variational autoencoders for speech enhancement," IEEE MLSP '18.
- [3] N. Takahashi, P. Agrawal, N. Goswami, & Y. Mitsufuji, "PhaseNet: Discretized phase modeling with deep neural networks for audio source separation," Interspeech '18.
- [4] S. Takamichi, Y. Saito, N. Takamune, D. Kitamura, & H. Saruwatari, "Phase reconstruction from amplitude spectrograms based on von-Mises-distribution deep neural network," IWAENC '18.
- [5] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," CVPR '17.