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Background & Motivation 1

 BSS methods
• Independence: ICA, IVA
• Low-Rankness: ILRMA

 Needs enough amount of observations ( ≥ 3 sec. ) 

 Time-varying Environments
 Short observations ( ≤ 2 sec. ) 

 Similarity search on a clean source database
 Human can separate mixtures if there is something 

familiar to us in the mixtures



Supervised learning? 2
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Outline
1. Existing BSS methods
 Frequency-domain BSS
 IVA, ICA, ILRMA

2. Proposed method
 SSBSS: Similarity Search-based BSS
 Differs in variance parameter updates

3. Experiments
 Clean source databases: close and open
 Convergence behavior
 Computational time with a GPU
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Objective function 5
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Variance parameters v 6

• Time varying activity
• Flat spectrum

Permutation 
problem

Low-rank model 
well estimated



IVA Optimization 7

Variance update Frequency-wise separation 
matrix update

Weighted covariance matrix

Solve HEAD: Hybrid Exact-Approximate Diagonalization
[Yeredor 2009] [Ono 2011]

N=2 case



ICA Optimization 8

Variance update Frequency-wise separation 
matrix update

Weighted covariance matrix

Solve HEAD: Hybrid Exact-Approximate Diagonalization
[Yeredor 2009] [Ono 2011]

N=2 case



ILRMA Optimization 9

Variance update Frequency-wise separation 
matrix update

Weighted covariance matrix

Solve HEAD: Hybrid Exact-Approximate Diagonalization
[Yeredor 2009] [Ono 2011]

N=2 case
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SSBSS Optimization 11

Variance update Frequency-wise separation 
matrix update

Weighted covariance matrix

Solve HEAD: Hybrid Exact-Approximate Diagonalization
[Yeredor 2009] [Ono 2011]

N=2 case



 Database

 Entry: F-dimensional power spectra vector

Clean source database 12

L source sound files



 Objective function (same structure )

 Variance v constrained
 F-dimensional vector 

SSBSS Objective function 13

Contrast function G

clean source database

: arbitral scale 



Variance update by similarity search 14

clean source database

Query: power spectra vector 

Measure: Itakura-Saito divergence

Variance update
separated signal

adjusted scale



SSBSS Optimization 15

Variance update Frequency-wise separation 
matrix update

Weighted covariance matrix

Solve HEAD: Hybrid Exact-Approximate Diagonalization
[Yeredor 2009] [Ono 2011]

N=2 case
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Experimental conditions 17

Distance: 120cm

Loudspeakers

Microphones
4cm apart 70°

150°

Room size: 4.45 × 3.55 × 2.5 m
Height of microphones and loudspeakers: 120 cm

Reverberation time
RT60 = 200 ms

 Sources: 2-second 
speeches

Mixtures: 32 cases       
Various combinations 
of 2-second speech 
signals



Clean source databases 18

 close
 contained the sources used for mixtures
 ideal situation for verifying the basic concept

 open
 did not contain the source time frames used for 

mixtures
• but contained the same speaker’s different utterances

 In some settings, new entries were added aiming for 
better performance

F = 1025 
# database entries was around 30,000



Separation performance 19

The higher 
the better

Did not perform well. Slightly 
improved as adding new entries.

Performed very well 
(ideal situation)

 Each dotted line 
corresponds to a 
mixture case

 Solid grey line 
represents the average 
of 32 mixture cases



Variances & separated signals 20

Mixture

7.16 dB

9.79 dB

3.85 dB

6.45 dB



Convergence & Computation 21

 Execution time
 20 seconds for 30 iterations and 2-second mixture

 Similarity search executed on a GPU
 158 queries (2 outputs × 79 time frames) for 30,000 

entries with F=1025 dim. took around 230 ms.

Obj. Func. IS div. for time samples

30 iterations 
were sufficient



Conclusion 22

 Proposed SSBSS
 Searches clean database       for similar entries to
 Updates variance parameters      with the result

 Experimental results
 Short observation of 2 seconds
 High performance with ideal close database
 Open database lowered the performance 

 Future work
 Constructing better databases for open cases
 Accelerating the search to handle larger databases
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