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・Datasets
- different 20 indoor/outdoor real world scenes for training, validation, test datasets
- training data (9,261): 0.5 [deg.] increments in every axis limited to 0~10 [deg.]
- validation (1,000), test data (1,000): randomly chosen limited to 0~10 [deg.]

・Networks
- case1(4lyrs.), case2(6lyrs.), case3(8lyrs.) 
case4(10lyrs.), case5(12lyrs.)

・Method
- experiments to verify the effectiveness of uniformization
- same input data size (200×100×6) for a fair comparison

・Results
- E-CNN increased the accuracy of estimation by 27.8%
- Higher precision by the lower standard deviation
- E-CNN performed better with increasing network depth
whereas the naïve approach did not

③ Equirectangular-Convolutional Neural Network Structure

① Introduction

Spherical and Equirectangular Images with distortion

・Optical Flow
: Scene-independent vector representation of pixels movement 
・Different lined/curved patterns appear on equirectangular images 

even if cameras rotate same quantity around a different axis
→ rotation estimation becomes axis dependent
→ this leads difficulty to learning and interrupt accurate estimation

・Rotation estimation is an important task for camera-equipped robots 
(Visual Odometry, Structure from Motion, Visual SLAM)
・Spherical cameras are effective for this due to their 360-degree FoV
・CNNs estimate robustly against environment variations
・Applying CNNs to spherical images is difficult

→ equirectangular images, which are a distorted planar projection can be used

Distortion remains in equirectangular images → low accuracy

・Uniformization Network: distorted optical flow patterns uniformization network by spherical image rotation
・Feature Extraction Network: feature extraction network by CNN, and rotation regressor

・E-CNN process
(1) takes two image frames as input

(2) rotates them in the directions of roll     
and pitch by 90 [deg.]

(3) calculates three non-rotated, roll-
rotated, and pitch-rotated optical flow

(4) stacks three optical flow as 200×100×6

(5) extracts features by CNN

(6) regresses euclidean distance between 
ground truth and estimated quaternion

⑤ Conclusion

・Conclusion
- 360 degree FoV property of spherical cameras  
enables uniformization of distortion

- The effectiveness of our proposed E-CNN was  
verified in various indoor/outdoor scenes

・Future works
- Handling the large angle rotation
- Scale independent rotation estimation
- Simultaneous estimation of rotation and translation

Results for Various Network Depths

Accurate spherical camera rotation estimation 
considering non-uniformity of equirectangular projection

Objective

Spherical Camera
(Ricoh Theta S)

Indoor/Outdoor real world scenes (Ricoh Theta S)

・E-CNN: uniformizes non-uniform rotation around all axes
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②Motion Estimation by Optical Flow

Equirectangular-Convolutional Neural Network (E-CNN) Structure
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Self-Supervised Learning for Spherical Camera
Rotation Estimation via Optical Flow Moments

Dabae Kim, Sarthak Pathak, Alessandro Moro, Renato Miyagusuku, Atsushi Yamashita, and Hajime Asama

Abstract—In this research, we propose a self-supervised optical
flow-based approach to learn the rotation of an arbitrarily
moving spherical camera. Nowadays, deep learning has made
it possible to learn camera motion efficiently. Unfortunately,
most approaches are supervised and require large datasets with
groundtruth labels, which are practically difficult to acquire. We
attempt to solve this via the use of a directional moment-based
loss function, unique to spherical cameras. It decouples camera
rotation from translation, removing the effect of 3D information
for rotation estimation. It also enables unlabelled, self-supervised
learning in new environments. We demonstrate the effectiveness
of our approach via experiments.

Index Terms—Self-supervised learning, spherical optical flow,
rotation estimation, convolutional neural networks

I. INTRODUCTION AND OUR APPROACH

LEARNING -based approaches of camera motion estima-
tion [1], [2] have recently been adopted and have per-

formed equivalently or better than conventional feature-based
approaches. Among them, supervised learning approaches are
often adopted to regress camera rotation with raw images or
optical flow as inputs. However, they require large datasets
with accurate labels, which are difficult to acquire. Many
attempts have been made to capture such datasets using motion
capture systems, GPS [3], and other sensors [4]. However, a
typical problem with learning-based approaches is scene bias
- the training is specific to the scene in which the data was
collected, leading to overfitting. This is due to the fact that
colors, textures, and 3D structures in different environments
are extremely variable, making learning of camera motion a
difficult problem.

L(I) = ∥q̂ − q∥2. (1)

To solve this overfitting issue, self (weakly)-supervised
learning approaches have been employed in camera motion
estimation [5], [6], [7], [8] and saliency prediction [9], [10] us-
ing various cameras. They handle the overfitting by using pre-
trained weights and re-training in the new scenario. However,
they still require groundtruth labels for pre- and re-training.
Another approach to solve this problem was by the use of
optical flow for motion estimation. Optical flow can represent
camera motion [11], [12] and object motions [13], [14]. It can
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Fig. 1. Spherical (left) and equirectangular (right) images acquired from the
spherical camera.

help to make the training less vulnerable to raw RGB pixel
intensities, which can cause scene overfitting [15]. However,
optical flow for an arbitrarily moving camera still contains
information about the 3D structure of the environment, due
to the parallax effect induced by camera translation. To avoid
overfitting to various scenes due to the effects of 3D structure,
it is necessary to be able to distinguish between translation and
rotation. In this research, we propose a self-supervised learning
approach not using labelled training data. Also, this approach
enable to decouple camera rotation from translation avoiding
overfitting problem.

Spherical cameras, as shown in Fig. 2. have the distinct
capability of distinguishing between rotation and translation.
This was first elucidated in the research by [16]. In a normal
camera, yawing to the left and translating to the left look
very similar, making it difficult to distinguish them. But in
a spherical camera, it is easy to figure out whether the camera
is rotating or translating, as it is possible to access information
from all direction. Hence, there has been an extensive body
of research dedicated to the use of spherical cameras for tasks
involving motion estimation, which have shed light on the
advantage of having a 360 degree field of view [17].

Hence, in this paper, we focus on estimating the rotation of
a spherical camera, while ignoring the effects of translation
via the use of a property that is unique to spherical cameras
- symmetry of information from all sides. We use a moment-
based loss function [18] that can ignore the effects of camera
translation. It can also provide for training without requiring
groundtruth labels, allowing for self-supervised learning in
new trained scenes which can be done easily by simply
capturing some data in those scenes. In our previous research
[19], we estimated spherical camera rotation by regressing
a euclidean, quaternion loss. However, the scenarios were
restricted to pure camera rotation and including translation
can lead to overfitting. In this paper, we solve that problem.
Towards the end, we experimentally show that by including
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