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Conditioned Expanded Wave-U-Net Architecture

Results

Multi-Modal URMP Dataset [2]

Target cases: bands, ensembles, orchestras
Base architecture: Wave-U-Net [1]
Extension: no predefined number of sources in the 
mix, multiplicative conditioning with instrument labels
Key features: end-to-end, autoencoder, convolutional, 
skip connections, upsampling with context
Outlook: extended conditioning for audio-visual and 
score-informed source separation. 

Source Separation for Unknown Number of Sources

•Evaluation is problematic because some sources are 
silent (we can’t estimate with the standard metrics how 
well the model discards unwanted sources)

•Qualitative examples demonstrate that (C)Exp-Wave-U-
Net outputs are more quiet for the undesired sources 

•The complexity of the task increases with the number of 
sources

•CExp-Wave-U-Net performs better in terms of SIR
•CExp-Wave-U-Net performs better than other methods 

while the number of sources increases
•Exp-Wave-U-Net and CExp-Wave-U-Net are fairly 

competitive to InformedNMF despite being end-to-end 
models without explicitly specified timbral models for 
each instrument

Discussion

Faster Training with TPUs

The architecture and the image are adapted from the original Wave-U-Net paper [1].
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Qualitative examples https://goo.gl/e18F41
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