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Numerical Experiments 

•      is an approximation of some subdictionary 

   

Problem Statement 

A generic problem :  

Atom selection in a continuous dictionary 
 

 

 

 

 

 

•   i  dictionary of infinitely uncountable atoms a(q) in some Hilbert space     , 

 q indexed on an interval Q of Rd  

• r is some iteration dependent « residual » vector in   

• Such a problem typically occurs in critical steps of BLASSO or OMP on 

continuous dictionaries 

 ||.||-optimal Approximation (SVD) 
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• Accurate atom selection promotes K ≥ 3 (1D case) 
• piecewise constant (K =1)  : no discrimination within Ql  

• Taylor 1st order  (K = 2) : optimal argument at the boundary of Ql  
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Dictionary Approximation 
Piecewise Linear Approximation 

Perspectives References 

Proposed approach  

• A general framework for continuous dictionary approximation     

Piecewise linear approximation 

• Efficient atom selection through Polar approximation 

Accurate  closed-form expression 

• ||.||-optimal linear approximation framework (i.e. SVD)  
Raised-cosine dictionary kernels yield Polar approximation     

• Typical applications : particle imaging (PIV, PALM-STORM)  

• Polar approximation 

  

 Admits a closed-form expression  

  

• Solution : spectral decomposition of kernel operator    

K largest eigenfuntions of R 

• Special case : raised-cosine kernel     

   

  

 1D Deconvolution : a(q) = h(. - q)  (h = convolution kernel) 
 k(q, q’) =  k(q - q’) = autocorrelation of h   

  

 Raised-cosine approximation of k(q - q’)  
• Most autocorrelations are smooth near zero 

• True also for Laplacian kernel despite 

singularity  

• Closed-form expression by maching at 0, D/2, D 

 

Performance measures 

• Bias on location error for r =  a(q*) 

• Sensitive to location and approximation error 

• Averaged Projection MSE  

   

 

 SVD / Polar approximation accurate for  

• Atom MSE approximation → grid methods (Continuous BP) 

• Atom Selection → off the grid methods (Continuous OMP, BLASSO) 

   

 

A common assumption 

 “Some efficient scheme to find amax exists” 

 Polar approximation = ||.||-optimal approximation 
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