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Motivation

ECG signal modeling

Due to shape similarities, Hermite functions became very
popular in

modeling QRS shape features,

ECG data compression,

clustering QRS complexes,

detecting abnormalities such as myocardial infarction,

ECG segmentation and delineation.

Other applications

Ballistocardiogram and myoelectric signal processing,

image processing,

computer tomography,

radar signal processing, and

physical optics.
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Signal representation

Notations
Continuous signal: f : R→ R.
Sampling period: T .
Discrete time instances: ti := i · T .
Discrete signal having n samples: [f]i := f (ti ) for i = 1, . . . , n.

0 0.05 0.1 0.15

Time (s)

0

0.5

1

1.5

A
m

p
lit

u
d

e
 (

m
V

)

20 40 60

Sample index

0

0.5

1

1.5

A
m

p
lit

u
d

e
 (

m
V

)

f

4 / 23



Introduction Nonlinear model using Hermite functions Case study: ECG compression

Linear model

[f]i = f (ti ) ≈
m∑

k=1

ckΦk(ti ) = (Φc)i (i = 1, . . . , n)

{Φk | 1 ≤ k ≤ m} can be the set of trigonometric or Walsh
functions, wavelets, orthogonal polynomials, splines, etc.

The least squares (LS) estimate of the coefficients is c = Φ+f,
where Φ+ denotes the Moore–Penrose inverse of Φ.
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Nonlinear model

[f]i = f (ti ) ≈
m∑

k=1

ckΦk(ti ;θ) = (Φ(θ)c)i (i = 1, . . . , n)

The functions {Φk(·;θ) | 1 ≤ k ≤ m} are parametrized by θ.
c and θ are determined via nonlinear optimization.

+ + . . .+ =

Nonlinear LS approximation of a QRS complex using Hermite functions
parametrized by the dilation and the translation.
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Nonlinear model
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Signal model

Goals

Generalization of former wave shape models via weight modification.

Adapt the new weighted Hermite system to various types of signals.

Heuristics for speeding up the nonlinear optimization.

Case study: electrocardiogram (ECG) signal compression.

Related works

ECG data compression1

ECG segmentation2

1T. Dózsa and P. Kovács, ECG signal compression using adaptive Hermite functions, Advances in
Intelligent Systems and Computing, vol. 399, pp. 245–254, 2015.

2P. Kovács, C. Böck, J. Meier, M. Huemer, ECG segmentation using adaptive Hermite functions,
Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 2017, pp. 1476–1480.
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Hermite polynomials

Terminology
Three-term recurrence relation:

hk+1(t) = (t − αk) hk(t)− βkhk−1(t), (k ∈ N).

h−1(t) = 0, h0(t) = 1 .

Recurrence coefficients for monic Hermite polynomials:

αk = 0, β0 =
√
π, βk = k/2, (k ∈ N+) .

Orthogonality:

‖hk‖22 · δkj = 〈hk , hj〉w : =

∫ ∞
−∞

hk(t)hj(t)w(t) dt,

where w(t) = e−t
2
is the Hermite weight function.
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Hermite functions

Definition

System of Hermite polynomials: {hk | k ∈ N}.
System of Hermite functions: {Φk | k ∈ N}, where

Φk(t) = hk(t)
/
||hk ||2 ·

√
w(t) (k ∈ N).

Affine argument transform

Φk(t; τ ;λ) :=
√
λΦk(λ(t − τ)) (t, τ ∈ R, λ > 0).

Optimization problem
Find λ, τ that minimize the so-called variable projection functional

r2(λ; τ) = ‖f −Φ(λ; τ)Φ+(λ; τ)f‖22 = ‖f − PΦ(λ;τ)f‖22.
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Hermite functions
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does not work perfectly.
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Weighted Hermite functions
Modifying the weight function

Let us define the class of weight functions:

V = {v(·;η) ∈ C (R) : v ≥ 0, ∃γ > 0, sup
t∈R
|v(t;η)|eγt

2
<∞} .

{qk | k ∈ N} is the set of orthogonal polynomials defined by v ∈ V.
Then the weighted Hermite functions are defined as follows:

Ψk(t;η) = qk(t)
/
||qk ||2 ·

√
v(t;η) (k ∈ N, v ∈ V, t ∈ R).

Restrictions of V
We consider nonnegative weight functions of the form

v(t;η) = u(t;η) · w(t) = p1(t;η)/p2(t;η) · e−t
2
,

where p1, p2 are polynomials in t of degree `,m such that p1/p2 ≥ 0.
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Weighted Hermite functions
Modification algorithms

Due to the partial fraction decomposition of u(t,η), it suffices to
consider the factors t − η1 and (t − η1)2 + η2

2 and analogous divisors.
Since the Hermite functions are defined over R, only the following
elementary modifications and their finite sums are allowed:

v1(t; η1) := u1(t; η1) · w(t), u1(t; η1) := (t − η1)2,

v2(t;η) := u2(t;η) · w(t), u2(t;η) := 1/((t − η1)2 + η2
2),

(t ∈ R, (η1, η2) ∈ R2, η2 6= 0, v1, v2 ∈ V) .

Full problem (optimal weighting + affine trf.)

Ψ(η; τ ;λ)ik := Ψk(ti ;η; τ ;λ) = Ψk(λ(ti − τ);η)

The extended variable projection problem can be written as:

min
η,τ,λ

r2(η; τ ;λ) = min
η,τ,λ

‖f −Ψ(η; τ ;λ)Ψ+(η; τ ;λ)f‖22.
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Weighted Hermite functions

Difficulties
The system of weighted Hermite functions {Ψk(·;η) | k ∈ N}
depends on the nonlinear parameters η.

Therefore, recomputing the corresponding recurrence coefficients
α̂k(η) and β̂k(η) for each value of η is a difficult task.

+ + . . .+ =

Full problem: nonlinear LS approximation of a QRS complex using translated
and dilated weighted Hermite functions.
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Weighted Hermite functions

Idea

Reduce the full optimization problem to two simple sub-tasks.

Reduced problem
1 Instead of the full system, optimize the weight function only:

min
η,τ,λ

r2(η; τ ;λ) = min
η,τ,λ
‖f −

√
v(η; τ ;λ)‖22,

where v(η; τ ;λ)i := v(ti ;η; τ ;λ) = v(λ(ti − τ);η).

2 Then, fix η, and find the best affine parameters:

min
τ,λ

r2(η; τ ;λ) = min
τ,λ
‖f −Ψ(η; τ ;λ)Ψ+(η; τ ;λ)f‖22.
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Weighted Hermite functions

Numerical optimization1

Projection operator: P⊥Ψ(η) := I− PΨ(η) = I−Ψ(η)Ψ+(η).

For the sake of simplicity, we omit the vector of free parameters η
from the notations. Then, the jth coordinate of the gradient is

1
2
∇r (j)

2 =
(
−
(
P⊥ΨDjΨ

+ +
(
P⊥ΨDjΨ

+
)T)

f
)T

P⊥Ψf ,

where Dj := ∂Ψ(η)/∂ηj .

It can be calculated only for the affine and the reduced problem.

In case of the full problem, quasi-Newton methods can be used.

1G. H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least squares
problems whose variables separate, SIAM Journal on Numerical Analysis (SINUM), vol. 10, pp.
413–432, 1973.
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Constraining the optimization

Parameters of u1(t; η) = (t − η)2

If η is far from zero, u1 is smoothed out by the tails of w(t) = e−t
2
.

Since w is a Gaussian, the three-sigma rule applies with σ = 1/
√
2.

Therefore, we restrict the values of η to the interval [−3σ; 3σ].

Parameters of u2(t;η) = 1/((t − η1)2 + η22)

Choose η such that the following inequality is satisfied:

0.8 ·
∫ ∞
−∞

u2(t;η) dt ≤
∫ 3σ

−3σ
u2(t;η) dt.

It means that the main lobe of u2 cannot be too wide, i.e., 80% of
its overall integral should lie in the interval [−3σ; 3σ].
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Constraining the optimization
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Weighted Hermite functions - Illustrations
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Examples using 6 basis functions for which the affine Hermite model (red line)
does not work perfectly, the weighted Hermite model (green line) performs better.
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Experiments
Evaluation method and data

ECG data compression.

Good benchmark regarding the distortion of ECG signals.

12 hours of ECG raw data from MIT/BIH arrhythmia database.
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Experiments cont.

Evaluation method and data
ECG data compression
Good benchmark regarding the distortion of ECG signals
12 hours of ECG raw data from MIT/BIH arrhythmia database

Comparison to other work
Compression ratio
Normalized PRDN for M ECG beats / QRS complexes

PRDN = 100 · 1
M

M∑
m=1

||fm − f̂m||2
||fm − fm||2

,

Dilation only vs. affine transformation vs. our work
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Results

Experimental results of 12 hours long real ECG data.

Dilation only1 Affine trf.2 Proposed work

Rec. PRDN QRS
PRDN

CR PRDN QRS
PRDN

CR PRDN QRS
PRDN

CR System

mean 18.18 20.28 19.75 15.40 11.40 18.83 14.88 9.86 18.82 -

Selected recordings (for illustration)
100 17.09 16.57 19.47 13.09 12.09 18.52 9.78 7.74 18.52 qf
102 33.57 36.34 20.22 33.69 24.91 19.23 31.27 16.05 19.23 qd
104 31.94 39.49 19.96 34.10 37.57 18.98 29.78 20.38 18.98 qd
232 32.40 20.28 24.39 26.00 14.55 23.22 24.18 9.59 23.21 qd+qf

1R. Jané, S. Olmos, P. Laguna, and P. Caminal, Adaptive Hermite models
for ECG data compression: performance and evaluation with automatic wave
detection, in Proc. of Computers in Cardiology Conference, 1993, pp. 389–392.

2T. Dózsa and P. Kovács, ECG signal compression using adaptive Hermite
functions, Advances in Intelligent Systems and Computing, vol. 399, pp.
245–254, 2015.
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Conclusions and applications

Conclusions

Generalization of former wave shape models allowing to model more
complex wave forms

Preoptimized parameters → subject-specific.

c, τ , λ → morphological changes over time.

Applications

Signal classification and
detection, information
extraction.

Potentially suitable for
modeling action potentials,
blood pressure, or other
biomedical signals.

Original

Weighted aprx.

Affine aprx.
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Conclusions cont.

Advantages compared to PCA, DWT, etc.
Method works for ECG recordings of any size (PCA not suited
for short recordings).
Domain of translation / dilation is continuous → resampling
at any grid is possible.
Wide field of applications (biomedical / image / radar signal
processing, computer tomography, physical optics, ...).
Automatic separation of morphological changes induced by
translation (τ), dilation (λ), or other sources (e.g. change of
amplitude → c). Methods like PCA lack this ability.
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Separation of morphological changes

Translation
Morphological changes induced by the
translation of a wave (e.g. due to changing
heart rate) are captured by τ .

Dilation
Morphological changes induced by the dilation
of a wave are captured by λ.

Additional Morphological changes
Morphological changes which are not induced
by translation or dilation but other (possibly
diagnostic) sources, should be captured by c.
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