Waveform Modeling by Adaptive Weighted Hermite Functions

Péter Kovács^{1,2} Carl Böck^{1,3} Tamás Dózsa² Jens Meier³ Mario Huemer¹

¹Institute of Signal Processing, Johannes Kepler University Linz, Austria ²Department of Numerical Analysis, Eötvös Loránd University, Hungary ³Department of Anesthesiology and Critical Care Medicine, Kepler University Hospital, Austria

44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Brighton, UK May 12-17, 2019

2 Nonlinear model using Hermite functions

Motivation

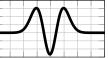
ECG signal modeling

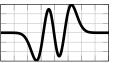
Due to shape similarities, Hermite functions became very popular in

- modeling QRS shape features,
- ECG data compression,
- clustering QRS complexes,
- detecting abnormalities such as myocardial infarction,
- ECG segmentation and delineation.

Other applications

- Ballistocardiogram and myoelectric signal processing,
- image processing,
- computer tomography,
- radar signal processing, and
- ophysical optics.



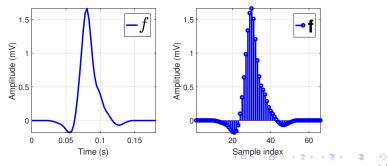


3/23

Signal representation

Notations

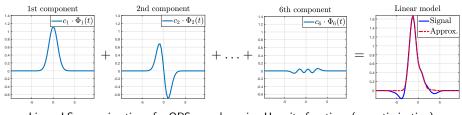
- Continuous signal: $f : \mathbb{R} \to \mathbb{R}$.
- Sampling period: T.
- Discrete time instances: $t_i := i \cdot T$.
- Discrete signal having *n* samples: $[\mathbf{f}]_i := f(t_i)$ for i = 1, ..., n.



Linear model

$$[\mathbf{f}]_i = f(t_i) \approx \sum_{k=1}^m c_k \Phi_k(t_i) = (\mathbf{\Phi} \mathbf{c})_i \quad (i = 1, \dots, n)$$

- {Φ_k | 1 ≤ k ≤ m} can be the set of trigonometric or Walsh functions, wavelets, orthogonal polynomials, splines, etc.
- The least squares (LS) estimate of the coefficients is $\mathbf{c} = \mathbf{\Phi}^+ \mathbf{f}$, where $\mathbf{\Phi}^+$ denotes the Moore–Penrose inverse of $\mathbf{\Phi}$.



Linear LS approximation of a QRS complex using Hermite functions (no optimization).

Nonlinear model

$$[\mathbf{f}]_i = f(t_i) \approx \sum_{k=1}^m c_k \Phi_k(t_i; \boldsymbol{\theta}) = (\boldsymbol{\Phi}(\boldsymbol{\theta})\boldsymbol{c})_i \quad (i = 1, \dots, n)$$

- The functions $\{\Phi_k(\cdot; \theta) | 1 \le k \le m\}$ are parametrized by θ .
- c and θ are determined via nonlinear optimization.

+ +...+ =

Nonlinear LS approximation of a QRS complex using Hermite functions parametrized by the dilation and the translation.

Nonlinear model

$$[\mathbf{f}]_i = f(t_i) \approx \sum_{k=1}^m c_k \Phi_k(t_i; \boldsymbol{\theta}) = (\boldsymbol{\Phi}(\boldsymbol{\theta})\boldsymbol{c})_i \quad (i = 1, \dots, n)$$

The functions {Φ_k(·; θ) | 1 ≤ k ≤ m} are parametrized by θ.
c and θ are determined via nonlinear optimization.

Nonlinear LS approximation of a QRS complex using Hermite functions parametrized by the dilation and the translation (final optimization step).

Signal model

Goals

- Generalization of former wave shape models via weight modification.
- Adapt the new weighted Hermite system to various types of signals.
- Heuristics for speeding up the nonlinear optimization.
- Case study: electrocardiogram (ECG) signal compression.

Related works

- ECG data compression¹
- ECG segmentation²

¹T. Dózsa and P. Kovács, *ECG signal compression using adaptive Hermite functions*, Advances in Intelligent Systems and Computing, vol. 399, pp. 245–254, 2015.

²P. Kovács, C. Böck, J. Meier, M. Huemer, *ECG segmentation using adaptive Hermite functions*, Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 2017, pp. 1476–1480.

Hermite polynomials

Terminology

• Three-term recurrence relation:

$$egin{aligned} h_{k+1}(t) &= (t-lpha_k)\,h_k(t) - eta_k h_{k-1}(t), & (k\in\mathbb{N}).\ h_{-1}(t) &= 0, & h_0(t) = 1\,. \end{aligned}$$

• Recurrence coefficients for monic Hermite polynomials:

$$\alpha_k = 0, \quad \beta_0 = \sqrt{\pi}, \quad \beta_k = k/2, \quad (k \in \mathbb{N}^+).$$

• Orthogonality:

$$\|h_k\|_2^2 \cdot \delta_{kj} = \langle h_k, h_j \rangle_w := \int_{-\infty}^{\infty} h_k(t) h_j(t) w(t) \, \mathrm{d}t,$$

where $w(t) = e^{-t^2}$ is the Hermite weight function.

Hermite functions

Definition

- System of Hermite polynomials: $\{h_k \mid k \in \mathbb{N}\}$.
- System of Hermite functions: $\{\Phi_k \mid k \in \mathbb{N}\}$, where

$$\Phi_k(t) = h_k(t)/||h_k||_2 \cdot \sqrt{w(t)} \qquad (k \in \mathbb{N}).$$

Affine argument transform

$$\Phi_k(t; au;\lambda) := \sqrt{\lambda} \Phi_k(\lambda(t- au)) \qquad (t, au\in\mathbb{R},\lambda>0)$$

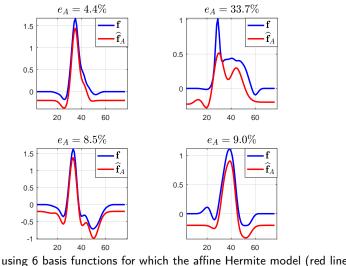
Optimization problem

Find λ, τ that minimize the so-called variable projection functional

$$r_2(\lambda;\tau) = \|\mathbf{f} - \mathbf{\Phi}(\lambda;\tau)\mathbf{\Phi}^+(\lambda;\tau)\mathbf{f}\|_2^2 = \|\mathbf{f} - \mathbf{P}_{\mathbf{\Phi}(\lambda;\tau)}\mathbf{f}\|_2^2.$$

9/23

Hermite functions



Examples using 6 basis functions for which the affine Hermite model (red line) does not work perfectly. $\langle \Box \rangle$, $\langle \Box \rangle$

Modifying the weight function

• Let us define the class of weight functions:

$$\mathcal{V} = \{ v(\cdot; \boldsymbol{\eta}) \in C(\mathbb{R}) : v \ge 0, \ \exists \gamma > 0, \ \sup_{t \in \mathbb{R}} |v(t; \boldsymbol{\eta})| e^{\gamma t^2} < \infty \}.$$

- $\{q_k \mid k \in \mathbb{N}\}$ is the set of orthogonal polynomials defined by $v \in \mathcal{V}$.
- Then the weighted Hermite functions are defined as follows:

$$\Psi_k(t;oldsymbol{\eta})=q_k(t)ig/||q_k||_2\cdot\sqrt{v(t;oldsymbol{\eta})}\qquad(k\in\mathbb{N},\;v\in\mathcal{V},t\in\mathbb{R}).$$

Restrictions of ${\cal V}$

We consider nonnegative weight functions of the form

$$v(t;\eta) = u(t;\eta) \cdot w(t) = p_1(t;\eta)/p_2(t;\eta) \cdot e^{-t^2},$$

where p_1, p_2 are polynomials in t of degree ℓ, m such that $p_1/p_2 \ge 0$.

Modification algorithms

- Due to the partial fraction decomposition of $u(t, \eta)$, it suffices to consider the factors $t \eta_1$ and $(t \eta_1)^2 + \eta_2^2$ and analogous divisors.
- Since the Hermite functions are defined over \mathbb{R} , only the following elementary modifications and their finite sums are allowed:

$$egin{aligned} & \mathsf{v}_1(t;\eta_1) := \mathsf{u}_1(t;\eta_1) \cdot \mathsf{w}(t), \quad \mathsf{u}_1(t;\eta_1) := (t-\eta_1)^2, \ & \mathsf{v}_2(t;m{\eta}) := \mathsf{u}_2(t;m{\eta}) \cdot \mathsf{w}(t), \quad \mathsf{u}_2(t;m{\eta}) := 1/((t-\eta_1)^2+\eta_2^2), \ & (t\in\mathbb{R},\;(\eta_1,\eta_2)\in\mathbb{R}^2,\;\eta_2
eq 0,\;\mathsf{v}_1,\mathsf{v}_2\in\mathcal{V})\,. \end{aligned}$$

Full problem (optimal weighting + affine trf.)

- $\Psi(\eta; \tau; \lambda)_{ik} := \Psi_k(t_i; \eta; \tau; \lambda) = \Psi_k(\lambda(t_i \tau); \eta)$
- The extended variable projection problem can be written as:

$$\min_{\boldsymbol{\eta},\tau,\lambda} r_2(\boldsymbol{\eta};\tau;\lambda) = \min_{\boldsymbol{\eta},\tau,\lambda} \|\mathbf{f} - \boldsymbol{\Psi}(\boldsymbol{\eta};\tau;\lambda) \boldsymbol{\Psi}^+(\boldsymbol{\eta};\tau;\lambda) \mathbf{f}\|_2^2.$$

ି ୦ ୦ ୦୦ .0 / 23

Difficulties

- The system of weighted Hermite functions $\{\Psi_k(\cdot; \eta) | k \in \mathbb{N}\}$ depends on the nonlinear parameters η .
- Therefore, recomputing the corresponding recurrence coefficients $\hat{\alpha}_k(\eta)$ and $\hat{\beta}_k(\eta)$ for each value of η is a difficult task.

+ +...+ =

Full problem: nonlinear LS approximation of a QRS complex using translated and dilated weighted Hermite functions.

Difficulties

- The system of weighted Hermite functions $\{\Psi_k(\cdot; \eta) | k \in \mathbb{N}\}$ depends on the nonlinear parameters η .
- Therefore, recomputing the corresponding recurrence coefficients $\hat{\alpha}_k(\eta)$ and $\hat{\beta}_k(\eta)$ for each value of η is a difficult task.

+ +...+ =

Full problem: nonlinear LS approximation of a QRS complex using translated and dilated weighted Hermite functions (final optimization step).

Idea

Reduce the full optimization problem to two simple sub-tasks.

Reduced problem

1 Instead of the full system, optimize the weight function only:

$$\min_{\boldsymbol{\eta},\tau,\lambda} r_2(\boldsymbol{\eta};\tau;\lambda) = \min_{\boldsymbol{\eta},\tau,\lambda} \|\mathbf{f} - \sqrt{\mathbf{v}(\boldsymbol{\eta};\tau;\lambda)}\|_2^2$$

where
$$\mathbf{v}(\boldsymbol{\eta}; \tau; \lambda)_i := \mathbf{v}(t_i; \boldsymbol{\eta}; \tau; \lambda) = \mathbf{v}(\lambda(t_i - \tau); \boldsymbol{\eta}).$$

2 Then, fix η , and find the best affine parameters:

$$\min_{\tau,\lambda} r_2(\boldsymbol{\eta};\tau;\lambda) = \min_{\tau,\lambda} \|\mathbf{f} - \boldsymbol{\Psi}(\boldsymbol{\eta};\tau;\lambda)\boldsymbol{\Psi}^+(\boldsymbol{\eta};\tau;\lambda)\mathbf{f}\|_2^2.$$

10/23

Numerical optimization¹

- Projection operator: $\mathsf{P}_{\Psi(\eta)}^{\perp} := \mathsf{I} \mathsf{P}_{\Psi(\eta)} = \mathsf{I} \Psi(\eta) \Psi^{+}(\eta).$
- For the sake of simplicity, we omit the vector of free parameters η from the notations. Then, the *j*th coordinate of the gradient is

$$\frac{1}{2}\nabla r_2^{(j)} = \left(-\left(\mathbf{P}_{\Psi}^{\perp}\mathbf{D}_j\mathbf{\Psi}^+ + \left(\mathbf{P}_{\Psi}^{\perp}\mathbf{D}_j\mathbf{\Psi}^+\right)^T\right)\mathbf{f}\right)^T\mathbf{P}_{\Psi}^{\perp}\mathbf{f}\,,$$

where $\mathbf{D}_j := \partial \mathbf{\Psi}(\boldsymbol{\eta}) / \partial \eta_j$.

- It can be calculated only for the affine and the reduced problem.
- In case of the full problem, quasi-Newton methods can be used.

¹G. H. Golub and V. Pereyra, *The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate*, SIAM Journal on Numerical Analysis (SINUM), vol. 10, pp. 413–432, 1973.

Constraining the optimization

Parameters of $u_1(t;\eta) = (t - \eta)^2$

If η is far from zero, u_1 is smoothed out by the tails of $w(t) = e^{-t^2}$. Since w is a Gaussian, the three-sigma rule applies with $\sigma = 1/\sqrt{2}$. Therefore, we restrict the values of η to the interval $[-3\sigma; 3\sigma]$.

Parameters of $u_2(t; \eta) = 1/((t - \eta_1)^2 + \eta_2^2)$

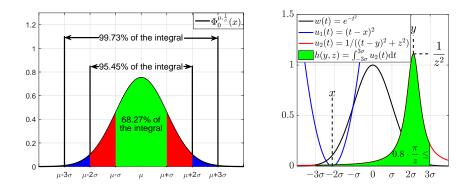
Choose η such that the following inequality is satisfied:

$$0.8 \cdot \int_{-\infty}^{\infty} u_2(t;\boldsymbol{\eta}) \, \mathrm{d}t \leq \int_{-3\sigma}^{3\sigma} u_2(t;\boldsymbol{\eta}) \, \mathrm{d}t.$$

It means that the main lobe of u_2 cannot be too wide, i.e., 80% of its overall integral should lie in the interval $[-3\sigma; 3\sigma]$.

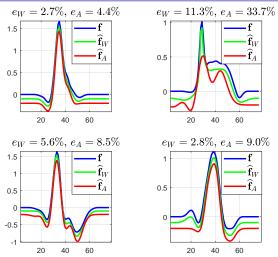
11/23

Constraining the optimization



The three-sigma rule and the constraints.

Weighted Hermite functions - Illustrations

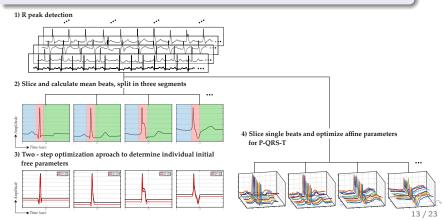


Examples using 6 basis functions for which the affine Hermite model (red line) does not work perfectly, the weighted Hermite model (green line) performs better. $a_{0,0}$

Experiments

Evaluation method and data

- ECG data compression.
- Good benchmark regarding the distortion of ECG signals.
- 12 hours of ECG raw data from MIT/BIH arrhythmia database.



Experiments cont.

Evaluation method and data

- ECG data compression
- Good benchmark regarding the distortion of ECG signals
- 12 hours of ECG raw data from MIT/BIH arrhythmia database

Comparison to other work

- Compression ratio
- Normalized PRDN for M ECG beats / QRS complexes

$$\overline{\mathsf{PRDN}} = 100 \cdot \frac{1}{M} \sum_{m=1}^{M} \frac{||\mathbf{f_m} - \mathbf{\hat{f}_m}||_2}{||\mathbf{f_m} - \overline{\mathbf{f}_m}||_2},$$

• Dilation only vs. affine transformation vs. our work

Results

	Dilation only ¹			Affine trf. ²			Proposed work			
Rec.	PRDN	QRS PRDN	CR	PRDN	QRS PRDN	CR	PRDN	QRS PRDN	CR	System
mean	18.18	20.28	19.75	15.40	11.40	18.83	14.88	9.86	18.82	-
Selected recordings (for illustration)										
100	17.09	16.57	19.47	13.09	12.09	18.52	9.78	7.74	18.52	qf
102	33.57	36.34	20.22	33.69	24.91	19.23	31.27	16.05	19.23	qd
104	31.94	39.49	19.96	34.10	37.57	18.98	29.78	20.38	18.98	qd
232	32.40	20.28	24.39	26.00	14.55	23.22	24.18	9.59	23.21	qd+qf

Experimental results of 12 hours long real ECG data.

¹R. Jané, S. Olmos, P. Laguna, and P. Caminal, *Adaptive Hermite models* for ECG data compression: performance and evaluation with automatic wave detection, in Proc. of Computers in Cardiology Conference, 1993, pp. 389–392.

²T. Dózsa and P. Kovács, *ECG signal compression using adaptive Hermite functions*, Advances in Intelligent Systems and Computing, vol. 399, pp. 245–254, 2015.

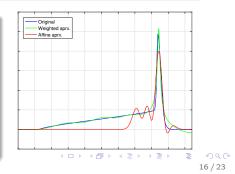
Conclusions and applications

Conclusions

- Generalization of former wave shape models allowing to model more complex wave forms
- Preoptimized parameters \rightarrow subject-specific.
- c, τ , $\lambda \rightarrow$ morphological changes over time.

Applications

- Signal classification and detection, information extraction.
- Potentially suitable for modeling action potentials, blood pressure, or other biomedical signals.



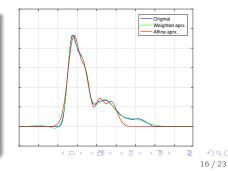
Conclusions and applications

Conclusions

- Generalization of former wave shape models allowing to model more complex wave forms
- Preoptimized parameters \rightarrow subject-specific.
- c, τ , $\lambda \rightarrow$ morphological changes over time.

Applications

- Signal classification and detection, information extraction.
- Potentially suitable for modeling action potentials, blood pressure, or other biomedical signals.



Waveform Modeling by Adaptive Weighted Hermite Functions

Péter Kovács^{1,2} Carl Böck^{1,3} Tamás Dózsa² Jens Meier³ Mario Huemer¹

¹Institute of Signal Processing, Johannes Kepler University Linz, Austria ²Department of Numerical Analysis, Eötvös Loránd University, Hungary ³Department of Anesthesiology and Critical Care Medicine, Kepler University Hospital, Austria

44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Brighton, UK May 12-17, 2019

▲□▶ ▲□▶ ▲壹▶ ▲壹▶ 壹 り९0

Conclusions cont.

Advantages compared to PCA, DWT, etc.

- Method works for ECG recordings of any size (PCA not suited for short recordings).
- $\bullet\,$ Domain of translation / dilation is continuous $\to\,$ resampling at any grid is possible.
- Wide field of applications (biomedical / image / radar signal processing, computer tomography, physical optics, ...).
- Automatic separation of morphological changes induced by translation (τ), dilation (λ), or other sources (e.g. change of amplitude → c). Methods like PCA lack this ability.

Separation of morphological changes

Translation

Morphological changes induced by the translation of a wave (e.g. due to changing heart rate) are captured by τ .

Dilation

Morphological changes induced by the dilation of a wave are captured by λ .

Additional Morphological changes

Morphological changes which are not induced by translation or dilation but other (possibly diagnostic) sources, should be captured by **c**.

프 문 문 프 문

References for orthogonal polynomials

- G. Szegő, *Orthogonal Polynomials*, AMS Colloquium Publications, New York, USA, 3rd edition, 1967.
- W. Gautschi, Orthogonal Polynomials, Computation and Approximation, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, UK, 2004.
- B. Fischer and G. H. Golub, *How to generate unknown orthogonal polynomials out of known orthogonal polynomials*, Computation and Approximation, Journal of Computational and Applied Mathematics, vol. 43, pp. 99–115, 1992.
- B. Fischer and G. H. Golub, On generating polynomials which are orthogonal over several intervals, Mathematics of Computation, vol. 56, pp. 711–730, 1991.

References for ECG modeling

- L. Sörnmo, P. L. Börjesson, M. E. Nygårds, and O. Pahlm, A method for evaluation of QRS shape features using a mathematical model for the ECG, IEEE Transactions on Biomedical Engineering, vol. 28, pp. 713–717, 1981.
- R. Jané, S. Olmos, P. Laguna, and P. Caminal, Adaptive Hermite models for ECG data compression: performance and evaluation with automatic wave detection, Proceedings of Computers in Cardiology Conference, 1993, pp. 389-392.
- T. Dózsa and P. Kovács, ECG signal compression using adaptive Hermite functions, Advances in Intelligent Systems and Computing, vol. 399, pp. 245–254, 2015.
- P. Kovács, C. Böck, J. Meier, and M. Huemer, ECG segmentation using adaptive Hermite functions, in Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 2017, pp. 1476–1480.

References for ECG modeling

- H. Haraldsson, L. Edenbrandt, and M. Ohlsson, *Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural networks*, Artificial Intelligence in Medicine, vol. 32, pp. 127–136, 2004.
- A. Sandryhaila, S. Saba, M. Püschel, and J. Kovacevic, Efficient compression of QRS complexes using Hermite expansion, IEEE Transactions on Signal Processing, vol. 60, no. 2, pp. 947–955, 2012.
- M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandth, and L. Sörnmo, "Clustering ECG complexes using Hermite functions and self-organizing maps," *IEEE Transactions on Biomedical Engineering*, vol. 47, no. 7, pp. 838–717, 2000.

References for other applications

- A. Mahadevan, S. Acharya, D. B. Sheffer, and D. H. Mugler, Ballistocardiogram Artifact Removal in EEG-fMRI Signals Using Discrete Hermite Transforms, IEEE Journal of Selected Topics in Sig. Proc., vol. 2, pp. 839–853, 2008.
- G. Leibon, D. N. Rockmore, W. Park, R. Taintor, G. S. Chirikjian, *A fast Hermite transform*, Theor. Comp. Sci., vol. 409, pp. 211–228, 2008.
- E. Moya-Albora, B. Escalante-Ramíreza, E. Vallejob, *Optical flow* estimation in cardiac CT images using the steered Hermite transform, Sig. Proc.:Image Commun., vol. 28, pp. 267–291, 2013.
- S. Stanković, I. Orović, A.Krylov, *The two-dimensional Hermite* S-method for high resolution inverse synthetic aperture radar imaging applications, IET Sig. Proc., vol. 4, pp. 352-362, 2010.
- P. Lazaridis, G. Debarge, P. Gallion, Discrete orthogonal Gauss-Hermite transform for optical pulse propagation analysis, J. Opt. Soc. Am. B, vol. 20, pp. 1508–1513, 2003.