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1. Introduction 2.4-On enhancing robustness 3.2-Verification of the robustness mode}

Recently, data recorded on non-Cartesian grids have been increased in applications like, sensor networks. , , , . , . [ : . .
Ther'efoyre the authentication and r'o’rec’?ion of these data have becomgpan important issue - To improve the watermarking robustness against attacks, the relationship between the watermark extraction - Th? f'ObUST”??S moqel was vgmﬁed by comparing the Hamming distance (H[_))_ of ’rhe extracted .wa’rer'mar'k
' P P ' and the effect of the attacks, namely, additive noise and nodes data deletion is established. using the original blind algorithm and with the robustness model after additive noise and deleting random

- Three scenarios of the watermark bits are considered: embedding only 'O bits, embedding only 1" bits and nodes data for 3 embedding scenarios: Embed O only; Embed 1 only: and embed ©"and 1.
embedding 'O’ and "1’ bits as follows:

The existing approaches are based on the node domain data hiding or embedding of watermarks. This can
distort the graph data values and might not be robust to many attacks as in the case of pixel-domain
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Is work proposes a grap spectral domain blina watermarking algorithm with a low embedding distortion watermark embedding should be in the range: L 17
and high robustness against attacks. S g
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The main contributions of this work are: {Xw(m — D+ Xy (m+ 1)‘ Fwy < X! (m) < Xw(m —1) + Xy, (m + 1)‘ T E £
- Proposal of a model for choosing the graph spectral coefficients for minimising the embedding 2 v 2 g :
distortion. I
- Proposal of a model for enhancing the robustness of hidden data against attacks. X (m— 1) + X, (m + 1) ' m— 1)+ X' (m 4 1 W@ & W
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Fig. 1: The block diagram of the proposed method

2.1-6raph Fourier Transform

- Let 6 = {V,E A}, is an undirected graph, where V is the set of N vertices, E is the set of edges and A is Fig. 3: The range of the GFT coefficients capable of extracting the watermark bits w ='1' correctly.

the adjacency matrix. The combinatorial graph Laplacian matrix, L, is defined as L = D-A, where D is the -~ T
diagonal matrix of vertex degrees. Embed 'O’ and '1': By combining the two cases above, we can find the condition of correct detection of

the watermark bits when embedding 'O’ and '1'. The range of the GFT coefficients which retain the
watermark bits correctly is:
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Fig. 6: Verification of the robustness model after additive noise (Column 1) and deleting random
nodes data (Column 2) for 3 embedding scenarios Embed '0' (Row 1), embed w ‘1" (Row 2) and

embed ='0 and 1' (Row 3) with choosing wy = '0.1' and w; ='0.3' for embedding 'O’ and ‘1’ respectively.

4. Performance Evaluation

4.1-Embedding distortion performance

-An eigenvalue decomposition of L matrix as follows:

Eigenvalues of L Eigenvectors of L
I = U/lUt:Z Agufuf). /
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- The Graph Fourier Transform (GFT) and its inverse (IGFT) are defined as follows: - The embedding distortion was +MSE with the embedding distortion model
N-1 N-1 Ky(m = 1) + Xiy(m + )| X (m— 1)+ X,,(m + 1) evaluated by calculating the MSE of o *MSE without the embedding distortion model
X (#) = Z x(D) up Q). | — x(i) = Z X (&) up Q). 2 o \ 2 T the watermarked graph using the
GFT coefficient L=0 Graph signd £=0 ~ &~ ngbier‘c?din;nmsdge??;rr n\:a?'?ou;v e

embedding capacities (bits).

2.2-6FT domain blind watermarking

- Compute the GFT coefficients and sorted in descending order.
- A non-overlapping 3 x 1 running window is passed through the sorted GFT coefficients, X, (m), to embed
the watermark in the median coefficient as follows:

oo flitl) = {Xs(m—1)+Xs(m+1)‘ S Woa— watermark
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Fig. 7: Embedding distortion performance.

3. Verification of the propased models - The robustness performance was evaluated by calculating the Hamming Distance of the extracted
watermark using the original blind algorithm and with the embedding model after additive noise

3.1-Verification of the embedding distortion mode] witho? =0.1 and deletion 10 random nodes data for various embedding capacities (bits).

- The watermark is extracted by passing 3 x 1 running window through the sorted watermarked GFT
coefficients as follows:

£ q K w' = X, (m) — lxs(m—1)+xs(m+1)‘ -
xtracted watermar b 2 ' - The embedding distortion model was verified by comparing the MSE of the watermarked graph using the o | | L
o . . . . . . . . . :| ' O . 0 I : \
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- This leads to the model: For each embedding coefficient triple, i Fig. 8: Robustness performance. Column 1: After additive noise (0.1). Column 2: After deletion
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- This means the error distortion is increased when the gradient difference increases and the minimum
MSE (u) is obtained when the gradient difference is close to O.

We have proposed a novel graph spectral domain blind watermarking for unstructured data.

It includes two new models for choosing GFT coefficients to embed the watermark minimising the
distortion and enhancing the robustness to attacks, respectively.

The proposed models were experimentally verified individually and together within the proposed graph
spectral domain blind watermarking
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Fig. 5: Verification of the embedding distortion minimisation model for various watermark values.
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