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INTRODUCTION

• Correctly handling intonation is crucial in speech synthesis, for both the per-
ceived naturalness and the conveyed meaning of a sentence.

• The Generalized Command Response Model (GCR) [1] represents the into-
nation contour (LF0) as a phrase component and a superposition of muscle
responses to spike command signals.

• In this work, we propose an end-to-end neural network trained to synthesize
pitch by reproducing the GCR model behaviour.

• We introduce trainable linear second-order recurrent units for muscle mod-
elling, and demonstrate gradient stability under modest conditions.

• The system achieves subjective scores matching a state-of-the-art baseline.

4.0

4.2

4.4

4.6

4.8

5.0

5.2

lf0

Original Reconstruction Phrase curve

0 100 200 300 400 500 600
frames [5 ms]

0.4

0.2

0.0

0.2

At
om

s

Modelling intonation with GCR: pitch reconstruction (top), impulse responses (bottom).

Why GCR?

• Consistent with Fujisaki’s Command-Response Model [2].

• Physiologically inspired from glottal muscles, and interpretable.

• Allows the (cross-language) transfer of emphasis at word-level.

END-TO-END MODEL

Previous work proposes a RNN to emulate the spike generation [3]. This method
requires hardcoded post-processing steps and omits the phrase component.

The proposed End-to-End (E2E) architecture offers the following:

• Trainable muscle parameters.

• Phrase component generation.
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MUSCLE MODELS

Muscle responses can be modeled using second-order linear recurrent systems.
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Generic discrete transfer function:

y(k) = Gx(k) + αy(k−1) + βy(k−2)

The gradients are computed for training through back-propagation:

∂y(k)
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n=0

[
y(k−1−n) · Kn

]
∂y(k)

∂β
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]
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∂x(k−n)
= GKn

Kn =


αKn−1 + βKn−2 if n > 0

1 if n = 0

0 if n < 0

• The recurrence in Kn causes gradient explosion, preventing convergence.

• Under the assumption that muscle models have an under-damped behaviour,
the transfer function can be expressed in polar notation. A compressing trans-
form is then used to constrain it and guarantee the gradient stability.

y(k) = Gx(k) + 2ρ cos(φ) y(k−1) − ρ
2 y(k−2)

y(k) = Gx(k) + 2 σ(p) tanh(c) y(k−1) − σ
2(p) y(k−2)

MODEL ARCHITECTURE

• The output layer of the network is composed of a set of muscle models (ϕi).

• Each unit is multiplied by a normalization gain before summation.

• A speaker-dependent bias is added to enable phrase component modelling.
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• Spiky command signals are obtained by applying L1 regularization over time
on the inputs of the muscle models.

• The filtered commands (muscle outputs) show that the phrase component is
modelled by a slow moving filter (red dash-dotted line).

• Objective and subjective scores show that the synthesized LF0 improves on the
previous model (Atom) and matches the quality of a strong baseline.

Objective scores

Model F0 RMSE V/UV error

Baseline 21.3 Hz 10.4 %

Atom 28.8 Hz 14.9 %

E2E 22.3 Hz 10.7 %

Subjective scores
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• The proposed model takes advantage of the flexibility of the E2E architecture,
while retaining the properties and behaviour of the GCR model.

• Further work would include a psycho-linguistic analysis of the model, and the
investigation of its exploitation in emotional speech synthesis.
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