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Introduction
• Unsupervised training of source separation networks

I Avoids parallel (clean + noisy) data
I Does not rely on simulated data (e.g. Lombard effect often not simulated)
I Leverages reverberant noisy recordings without ground truth

• Concept
1. Apply unsupervised teacher to observation
2. Use teacher result to train the student

Related work:

Tuesday Seetharaman et al.
Wednesday Tzinis et al.
This session Aihara et al.• Signal model in STFT domain

ytf =
∑
k

hkf sktf + ntf =
∑
k

xktf + ntf
k source/ class index
t time frame index
f frequency bin index

Probabilistic model: cACGMM (teacher)
Complex angular central Gaussian mixture model (Ito et al., 2016)
Exploits spatial diversity to separate speakers:
• Multi-channel observations in STFT domain
• Complex random vectors ỹtf = ytf /‖ytf ‖
• Relative acoustic transfer function captured

by spatial correlation matrix

p(ỹtf ;θ) =
∑
k

πkf cACG(ỹtf ,Bkf )

Bkf

ỹtfzktf
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(Probabilistic dependencies)

Neural network: Deep Clustering (student)
Exploit speaker specific spectral characteristics for separation:
• Single-channel observations in magnitude spectrum domain
• Encoder (BLSTM) yields embedding vectors etf
• Training encourages tendency to form clusters in embedding space
• Cluster using k-means on etf
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Proposed training scheme
Unsupervised Deep Clustering: Knowledge transfer across domains
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Prediction variant: k-means only
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• Applicable in a single channel scenario
• Yields hard masks

Prediction variant: k-means cACGMM
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• Needs multi-channel observations to leverage spatial cues
• On average better performance
• Yields soft masks

Example masks
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Datasets
• 30000, 500, and 1500 six channel mixtures from 3 WSJ sets
• White background noise: 20 dB – 30 dB
• Reverberation time T60: 200 ms – 500 ms (image method)

Source extraction by masking

Model SDR gain/dB PESQ STOI WER

BSS-Eval Invasive gain gain /%

cACGMM only 7.2 10.4 0.17 0.11 38.4
Student k-means 5.5 9.4 −0.42 0.04 75.1
Student k-means cACGMM 9.5 13.2 0.40 0.18 29.3
Superv. k-means 5.9 9.5 −0.25 0.06 75.8
Superv. k-means cACGMM 9.1 12.6 0.37 0.16 31.0
Oracle IBM cACGMM 9.7 13.3 0.48 0.14 28.9

Source extraction by beamforming

Model SDR gain/dB PESQ STOI WER

BSS-Eval Invasive gain gain /%

cACGMM only 5.1 12.7 0.37 0.09 28.0
Student k-means 5.7 13.6 0.43 0.11 29.0
Student k-means cACGMM 6.4 15.3 0.52 0.13 20.7
Superv. k-means 5.9 14.2 0.47 0.12 26.5
Superv. k-means cACGMM 6.1 14.9 0.50 0.12 21.1
Oracle IBM cACGMM 6.4 15.5 0.78 0.12 19.9

Conclusions
• Deep Clustering can be trained from scratch without supervision
• No need for parallel data or simulated data
• Student outperforms the probabilistic model-based teacher
• Unsupervised system able to outperform supervised system

Concept generalizes to other applications:

Teacher Student

IMCRA Neural noise mask estimator
cACGMM Neural network-supported beamforming
SRP-Phat Neural DoA estimator

Interspeech: Unsupervised training of neural mask-based beamforming
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