

Introduction

- Unsupervised training of source separation networks
- Leverages reverberant noisy recordings without ground truth

Concept

- 2. Use teacher result to train the student
- Signal model in STFT domain

$$\mathbf{y}_{tf} = \sum_{k} \mathbf{h}_{kf} \, \mathbf{s}_{ktf} + \mathbf{n}_{tf} = \sum_{k} \mathbf{x}_{ktf} + \mathbf{n}_{tf}$$

Exploits **spatial** diversity to separate speakers:

- Multi-channel observations in STFT domain
- Complex random vectors $\mathbf{\tilde{y}}_{tf} = \mathbf{y}_{tf} / \|\mathbf{y}_{tf}\|$
- Relative acoustic transfer function captured by spatial correlation matrix

$$p(\mathbf{\tilde{y}}_{tf}; \boldsymbol{ heta}) = \sum_{k} \pi_{kf} cACG(\mathbf{\tilde{y}}_{tf}, \mathbf{B}_{kf})$$

- Encoder (BLSTM) yields embedding vectors \mathbf{e}_{tf}
- Cluster using k-means on \mathbf{e}_{tf}

Unsupervised Training of a Deep Clustering Model for Multichannel Blind Source Separation

Lukas Drude, Daniel Hasenklever, Reinhold Haeb-Umbach Department of Communications Engineering, Paderborn University, Germany {drude, haeb}@nt.upb.de

Proposed training scheme

Unsupervised Deep Clustering: Knowledge transfer across domains

Datasets

- 30000,
- White
- Reverb

Sour

Model

cACGM Student Student Superv. Superv. Oracle

Sour

Model

cACGM Student Student Superv. Superv. Oracle

Conc

- Deep (
- No nee
- Studer
- Unsuperior

Concept

, 500, and 1500 six channel mixtures from 3 WSJ sets background noise: 20 dB – 30 dB peration time T ₆₀ : 200 ms – 500 ms (image method)					
ce extraction by masking					
	SDR gain/dB		PESQ	STOI	WER
	BSS-Eval	Invasive	gain	gain	/ %
M only	7.2	10.4	0.17	0.11	38.4
z→k-means	5.5	9.4	-0.42	0.04	75.1
$\rightarrow k$ -means $\rightarrow cACGMM$	9.5	13.2	0.40	0.18	29.3
→k-means	5.9	9.5	-0.25	0.06	75.8
\rightarrow k-means \rightarrow cACGMM	9.1	12.6	0.37	0.16	31.0
IBM →cACGMM	9.7	13.3	0.48	0.14	28.9
ce extraction by beamforming					
	SDR gain/dB PESQ STOI WER				
	BSS-Eval	Invasive	gain	gain	/%
IM only	5.1	12.7	0.37	0.09	28.0
t →k-means	5.7	13.6	0.43	0.11	29.0
$t \rightarrow k$ -means $\rightarrow cACGMM$	6.4	15.3	0.52	0.13	20.7
→k-means	5.9	14.2	0.47	0.12	26.5
\rightarrow k-means \rightarrow cACGMM	6.1	14.9	0.50	0.12	21.1
IBM →cACGMM	6.4	15.5	0.78	0.12	19.9
clusions					
Clustering can be trained from scratch without supervision ed for parallel data or simulated data nt outperforms the probabilistic model-based teacher ervised system able to outperform supervised system					
generalizes to other applications: Teacher Student					
IMCRANeural noise mask estimatorcACGMMNeural network-supported beamformingSRP-PhatNeural DoA estimator					
ech: Unsupervised training of neural mask-based beamforming					
al resources were provided by the Paderborn Center for Parallel Computing.					

Interspee

Computation

Computer Science, Electrical Engineering and Mathematics

NT Communications Engineering Prof. Dr.-Ing. Reinhold Häb-Umbach