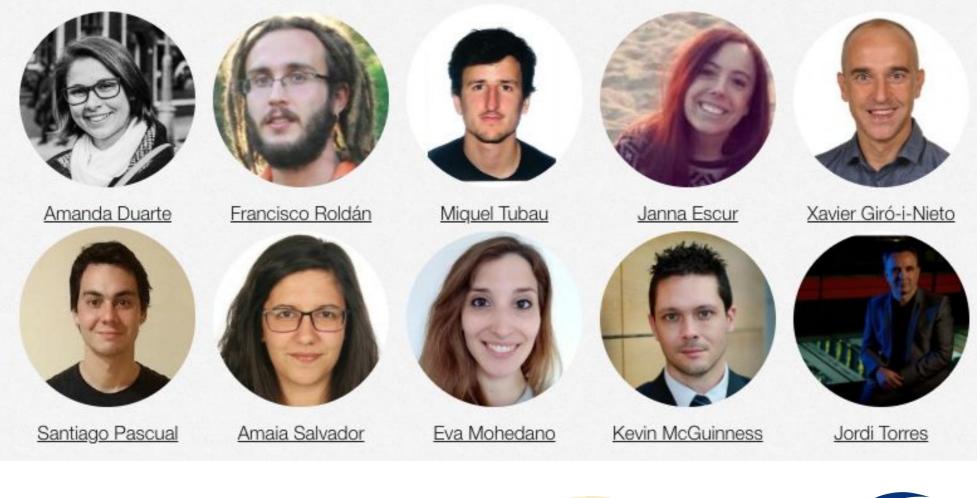
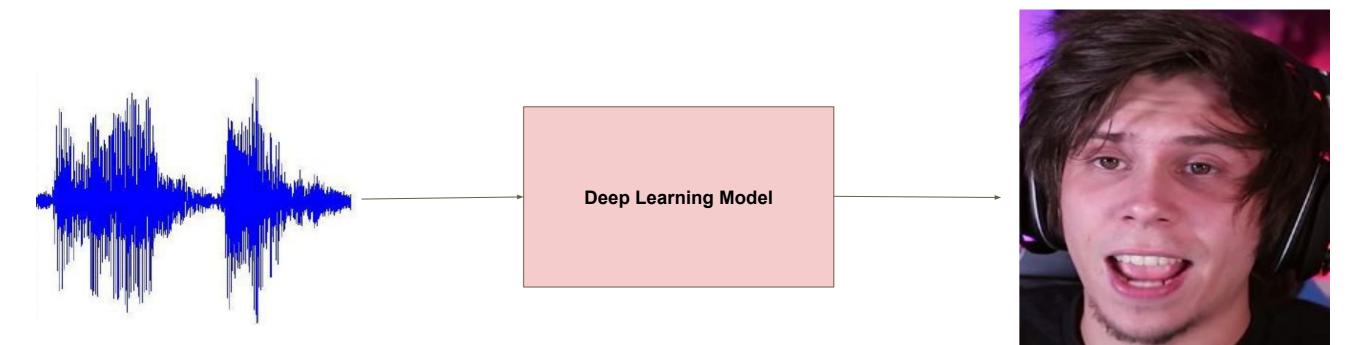


Speech-conditioned Face Generation using Generative Adversarial Networks



1

Wav2Pix MOTIVATION



Speech Signal

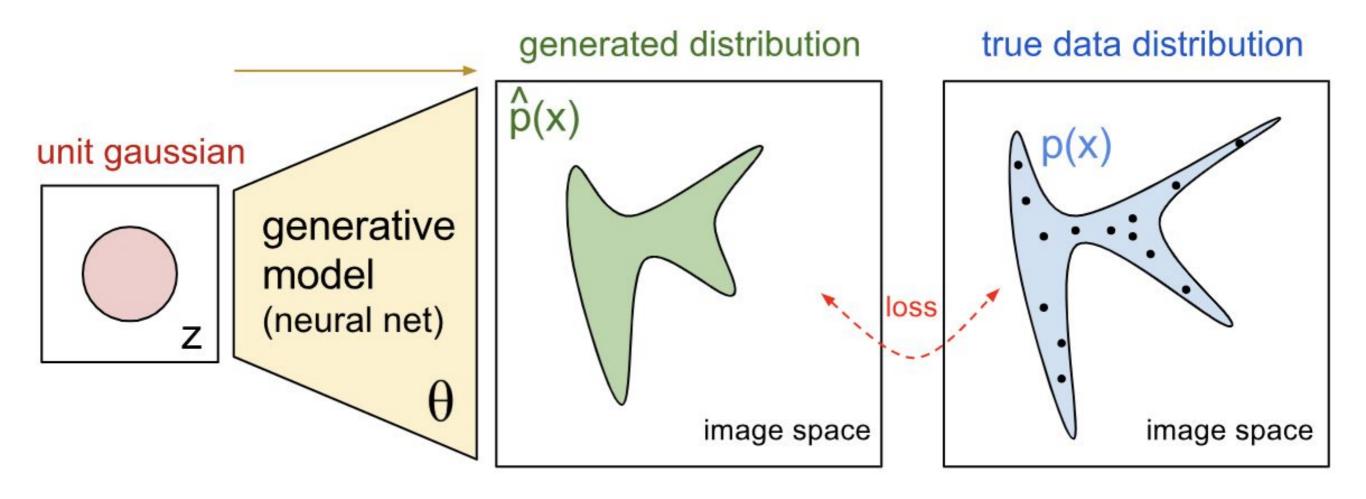
• Audio and visual signals are the most common modalities used by humans to identify other humans and sense their emotional state

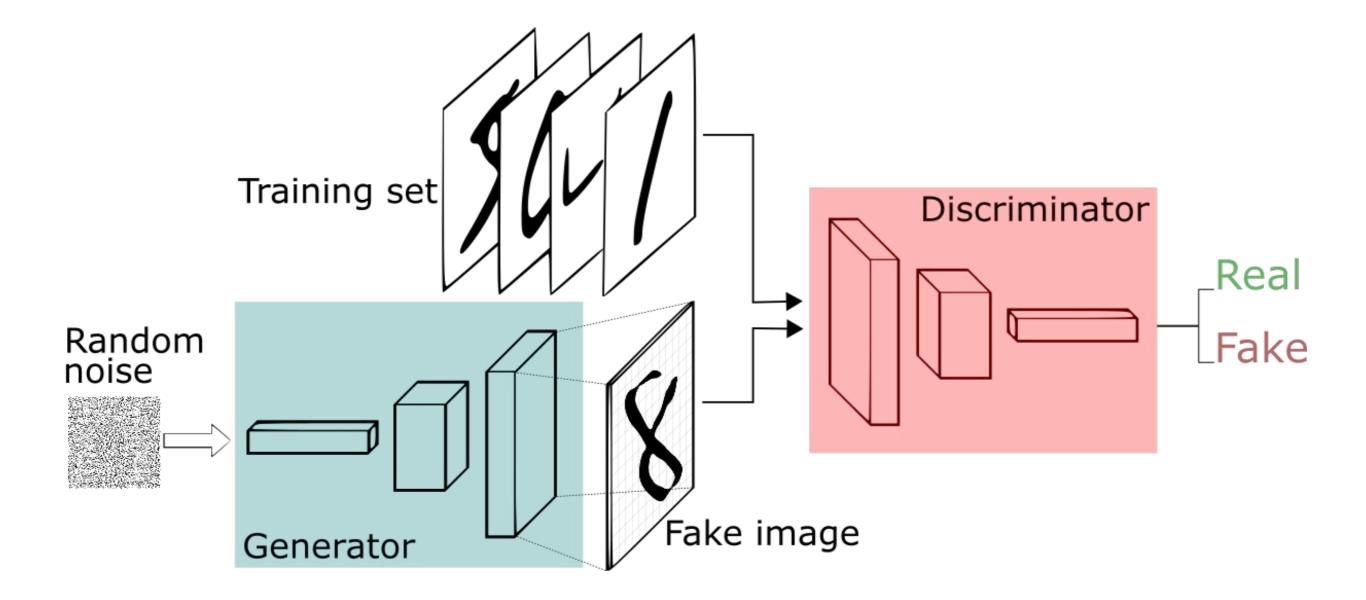
• Features extracted from these two signals are often highly correlated

 Roldán et. al. address this correlation proposing a face synthesis method using exclusively raw audio representation as inputs

RELATED WORK

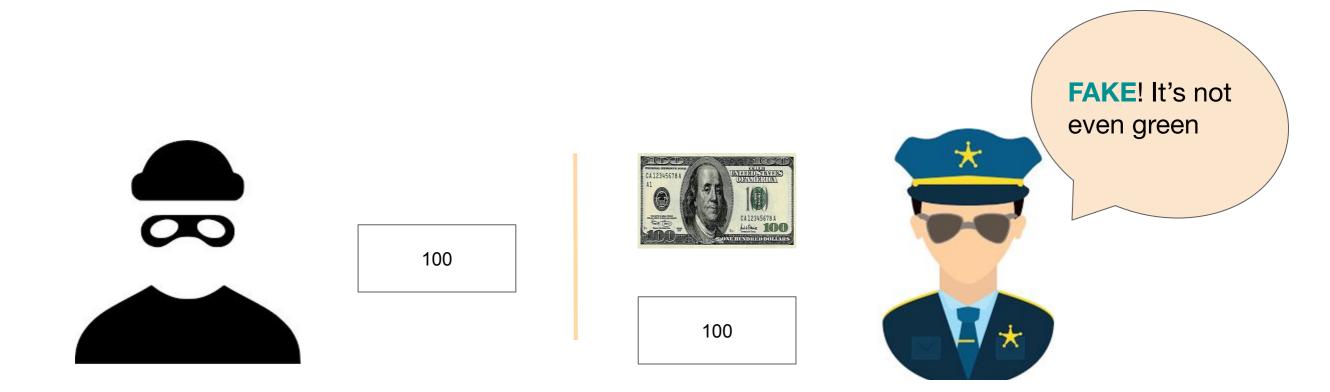
Wav2Pix GENERATIVE MODELS



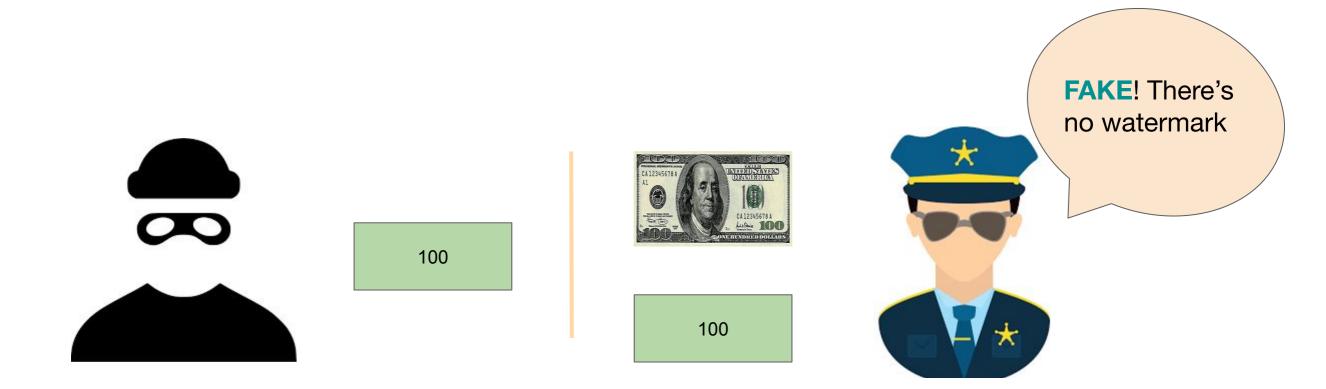


 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(\mathbf{x})} \left[\log \mathbf{D}(\mathbf{x}) \right] + \mathbb{E}_{z \sim p_{z}(\mathbf{z})} \left[\log(1 - \mathbf{D}(\mathbf{G}(\mathbf{z}))) \right].$

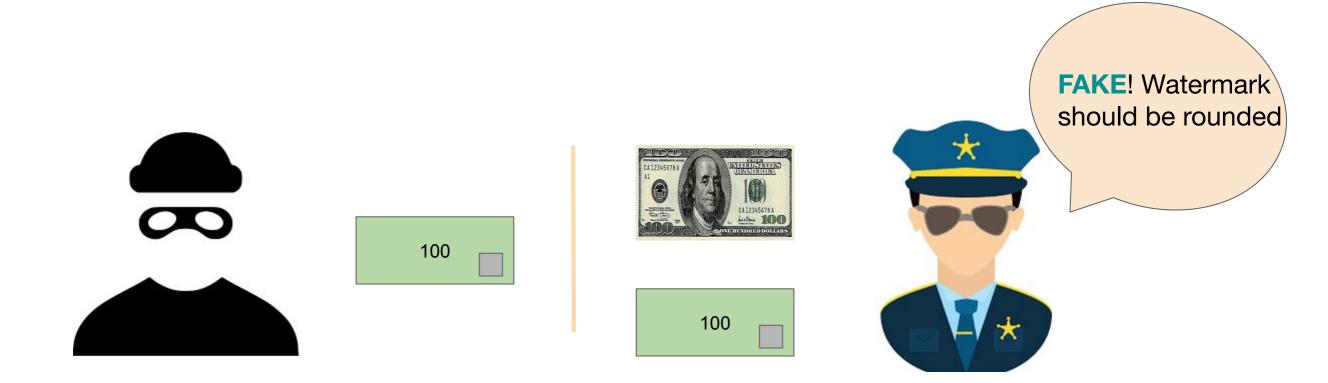
Imagine we have a counterfeiter (G) trying to make fake money, and the police (D) has to detect whether the money is **true** or **fake**.



Imagine we have a counterfeiter (G) trying to make fake money, and the police (D) has to detect whether the money is **true** or **fake**.

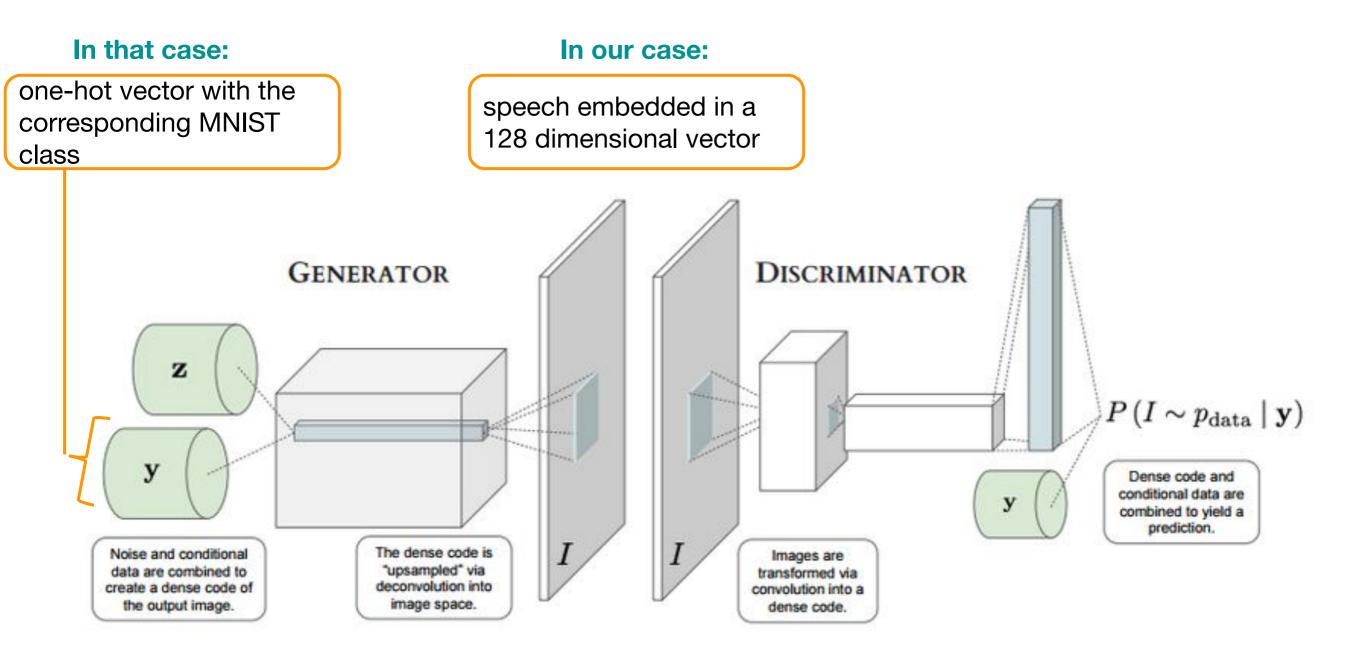


Imagine we have a counterfeiter (G) trying to make fake money, and the police (D) has to detect whether the money is **true** or **fake**.



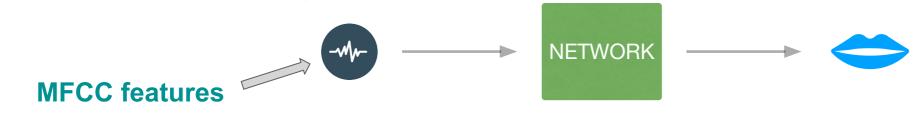
After enough iterations:

Wav2Pix CONDITIONED GANs



Wav2Pix SPEECH-CONDITIONED IMAGE SYNTHESIS

• **Suwajanakorn** et. al. focused on animating a point-based lip model to later synthesize high quality videos of President Barack Obama



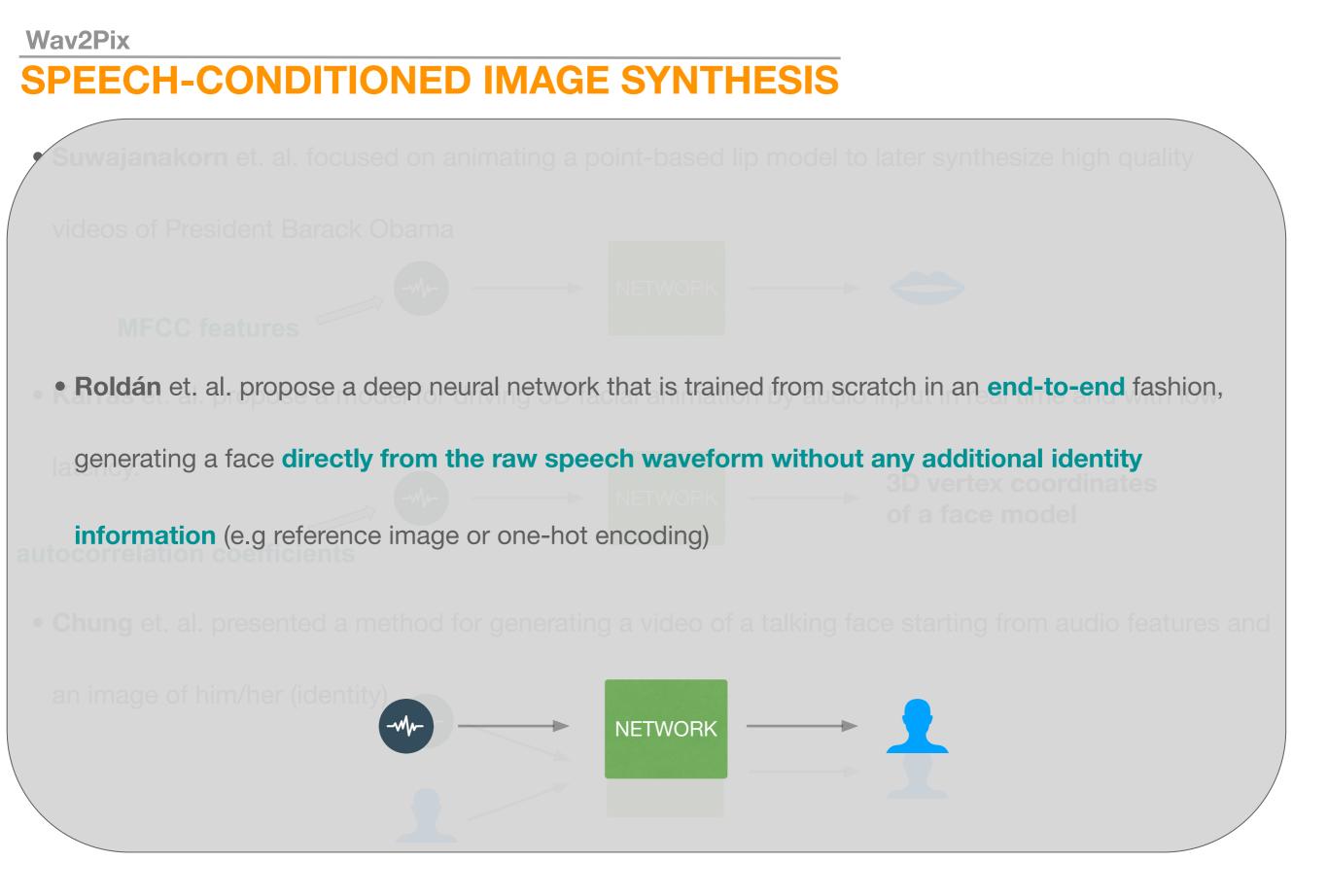
Karras et. al. propose a model for driving 3D facial animation by audio input in real time and with low latency.
 3D vertex coordinates

• **Chung** et. al. presented a method for generating a video of a talking face starting from audio features and an image of him/her (identity)

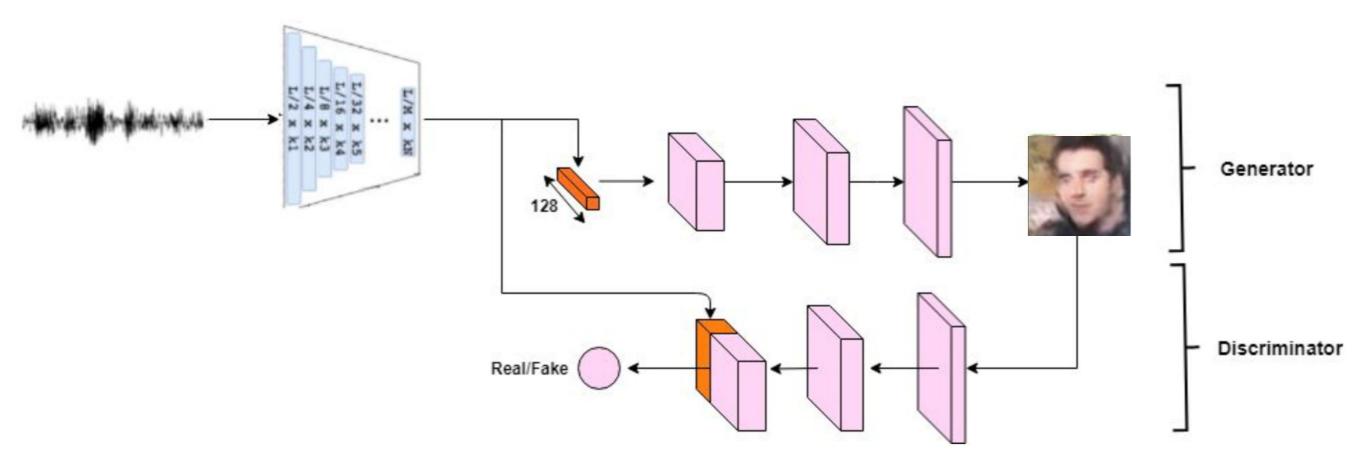
Chung, Joon Son, Amir Jamaludin, and Andrew Zisserman. "You said that?." BMVC 2017.

Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-Shlizerman, "Synthesizing obama: learning lip sync from audio," ACM TOG, 2017. Tero Karras, Timo Aila, Samuli Laine, Antti Herva, and Jaakko Lehtinen, "Audio-driven facial animation by joint end-to-end learning of pose and emotion," ACM TOG, 2017.

12



Wav2Pix SPEECH-CONDITIONED FACE GENERATION WITH DEEP GANs



LSGAN

64x64 resolution

Dropout instead of noise input

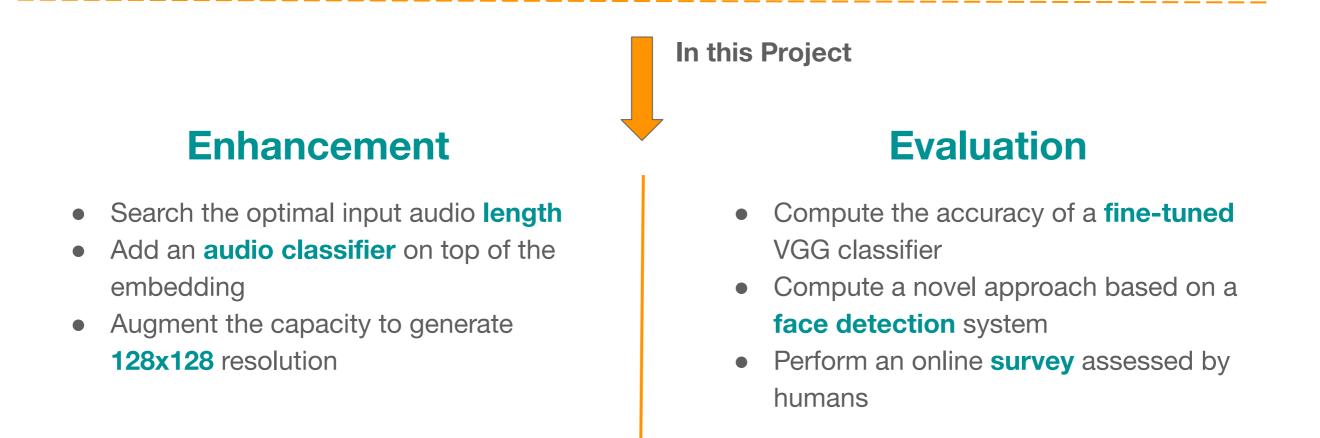
Francisco Roldán Sánchez, "Speech-conditioned face generation with deep adversarial networks"

Santiago Pascual, Antonio Bonafonte, and Joan Serrà, "Segan: Speech enhancement generative adversarial network," Interspeech, 2017

Wav2Pix SPEECH-CONDITIONED FACE GENERATION WITH DEEP GANs

• Roldán et. al. model does **not generalize** for unseen speech

 Inception Score metric used by Roldán et. al. evaluates the images in terms of quality but **not** in terms of **realism**



Wav2Pix PREVIOUS DATASET

	Sex	Speakers	Faces	Speech (sec)
youtubers_v1	Male	29	26299	105196
	Female	33	15900	63600
	TOTAL	62	42199	168796

Wav2Pix PREVIOUS DATASET

drawbacks

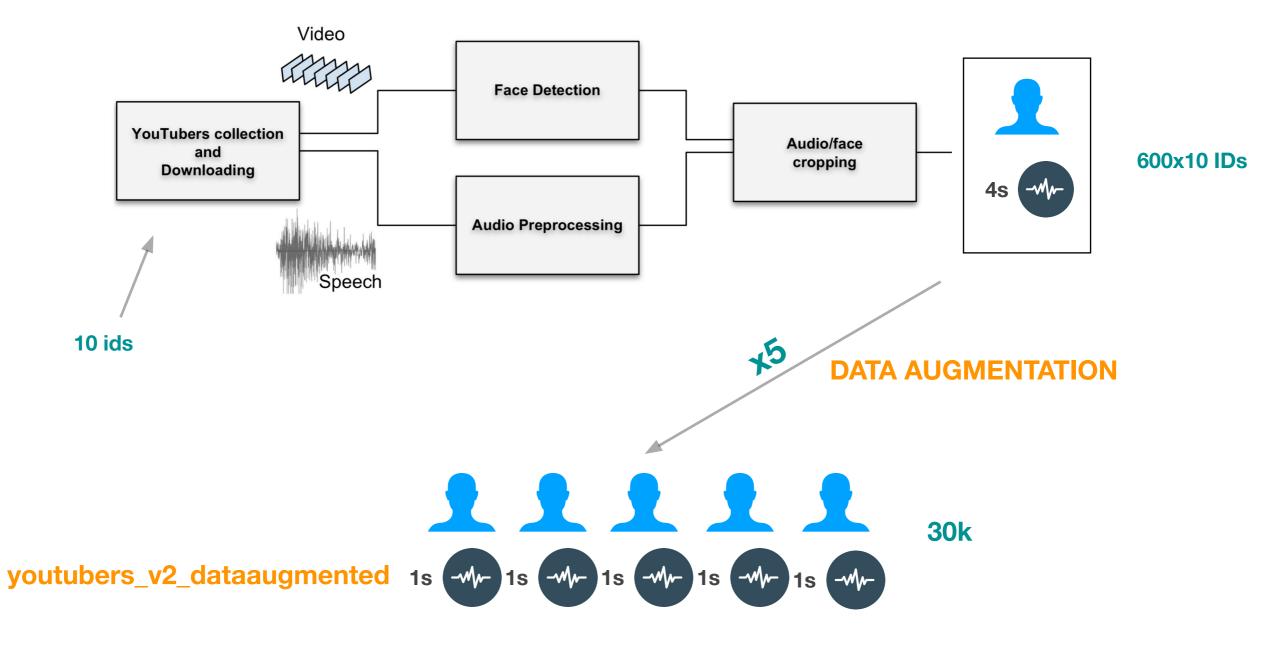
- Imbalanced dataset. Among the 62 youtubers, the amount of images/audios vary between 2669 and 52 pairs
- Notable amount of **false positives**

true identity

false positives

- Most of the speech frames were **noisy**
 - Background music in a post-process edition
 - \circ Voice of a third person

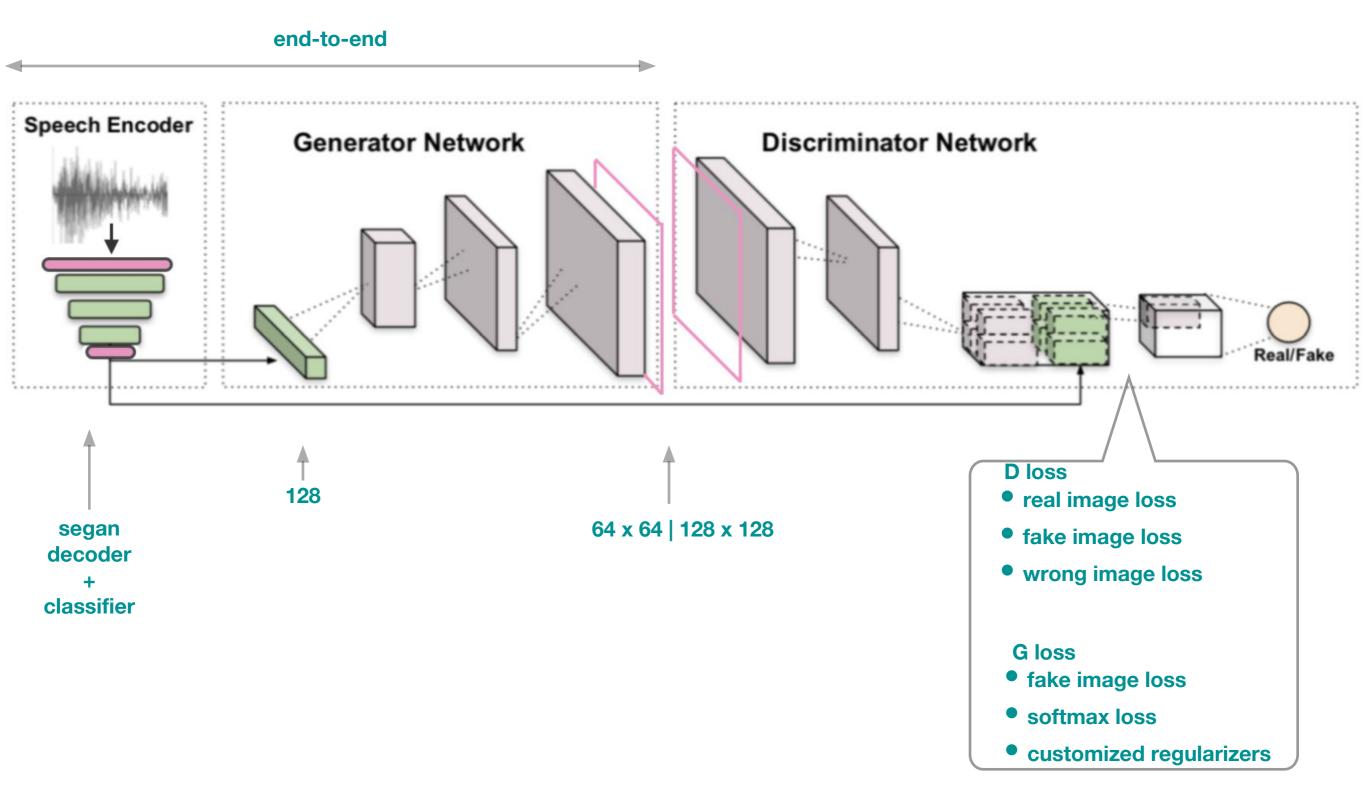
youtubers_v2 - new dataset collection



	Roldán	Ou	rs
Features	youtubers_v1	youtubers_v2	youtubers_v2 data_augmented
Males	29	5	5
Females	33	5	5
Audio-face pairs	42199	6000	30000
Average audio-face pairs / ID	694	600	3000
Std audio-face pairs / ID	616	0	0
Audio duration (s)	4	4	1
Videos processed / ID	15	4	4
Balanced	False	True	True
Cleaned	False	True	True
Size in memory (GB)	7.4	1.8	2.1

ARCHITECTURE

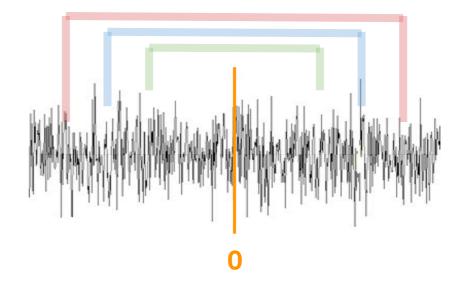
Wav2Pix ARCHITECTURE



ARCHITECTURE

contributions

• Audio segmentation module



- Speech classifier
 - 1-hidden NN with 10 output units

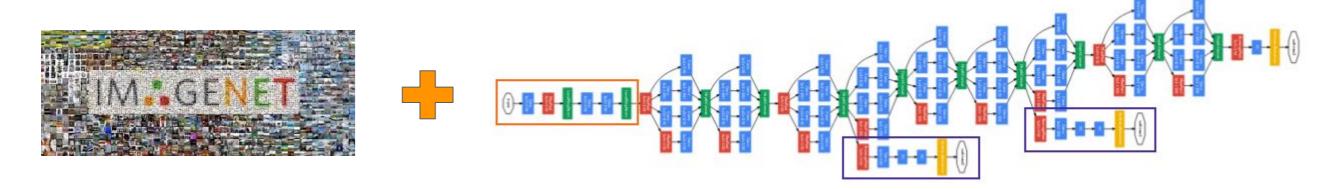
- Additional convolutional and deconvolutional layers
 - Kernel size: 4
 - Stride: 2
 - Padding: 1

EVALUATION

Fréchet Inception Distance

$$FID(r,g) = \|(\mu_r - \mu_g)\|_2^2 + \operatorname{Tr}(\sum_r + \sum_g -2(\sum_r \sum_g)^{\frac{1}{2}})$$

• Inception-v3 network pre-trained on ImageNet



- Results not consistent with human judgements
- Little amount of data to obtain reliable results
- The measure relies on an ImageNet-pretrained inception

network, far from ideal for datasets like faces

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter, "Gans trained by a two time-scale update rule converge to a local nash equilibrium," in Advances in Neural Information Processing Systems, 2017, pp. 6626–6637.

VGGFace fine-tuned classifier

 Network proposed by the Visual Geometry Group department of Engineering Science (University of Oxford)

	Roldán	Ours
Real data	100	100
Generated data for seen speech	56.34	76.81
Generated data for unseen speech	16.69	50.08

- Improvement of our model in preserving the identity
- Bearing in mind the metric is sensible to image quality, and the probability of confusion is 90%, the results are promising.

Facial Landmark Detection ratio

• **Robustness** to image quality

	Roldán	Ours
Real data	75.02	72.48
Generated data for seen speech	61.76	84.45
Generated data for unseen speech	60.81	90.25

• 90% of the generated images of our

model for unseen speech can be

considered as faces

Facial Landmark Detection ratio

• **Robustness** to image quality

	Roldán	Ours
Real data	75.02	72.48
Generated data for seen speech	61.76	84.45
Generated data for unseen speech	60.81	90.25

• 90% of the generated images of our

model for unseen speech can be

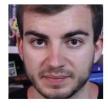
considered as faces

Online survey

$$MOS = \frac{\sum_{n=1}^{N} R_n}{N}$$

• 42 people have been asked to answer 2 questions for 32 different pairs of images:

Real Image (baseline)



 Compare the quality of the generated image with respect to the real one (5-identical, 4-good-, 3-fair, 2-poor, 1-bad)

 1
 2
 3
 4
 5

 Bad
 Image: Colspan="4">Or Colspan="4">Image: Colspan="4">Identical

Generated image

O Yes

O No

O Not sure

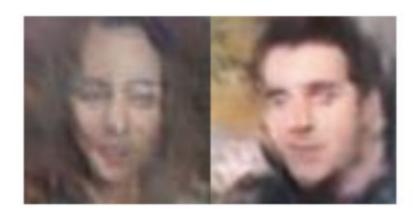
Could you recognize the real person (appearing in the baseline image) from the generated image?

MOS	% NOT SURE	% NO	% YES
2.09	14	52	34

- Not reliable results
- This metric should be further improved

EXPERIMENTS

datasets comparison



youtubers_v1

Best quality images manually selected

youtubers_v2

youtubers_v2 data augmented

Facial landmark detection ratio (%)

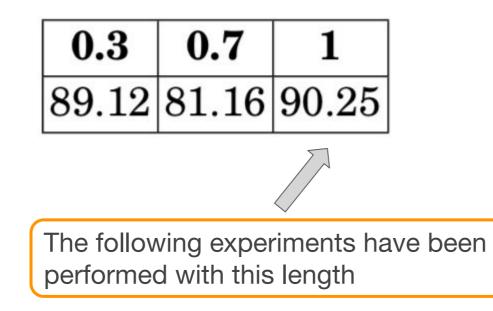
youtubers_v1	youtubers_v2	youtubers_v2 Data Augmented
60.81	71.47	90.25

Wav2Pix EXPERIMENTS

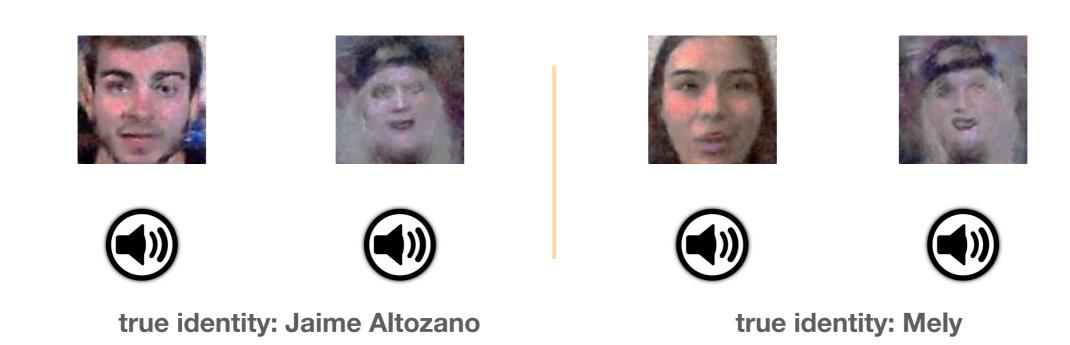
input audio length

Best quality images manually selected w.r.t the audio length

Fine-tuned VGGclassifier accuracy in % w.r.t the audio length (in seconds)



input audio length



The more **voice** frames in the audio, the easier for the network to learn the identity

image resolution

The following experiments have been performed with 128x128 image resolution

identity classifier

Fine-tuned VGGFace classifier accuracy in % w.r.t the model

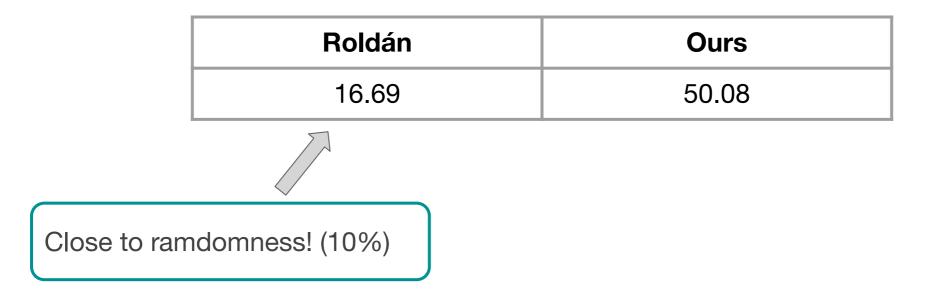
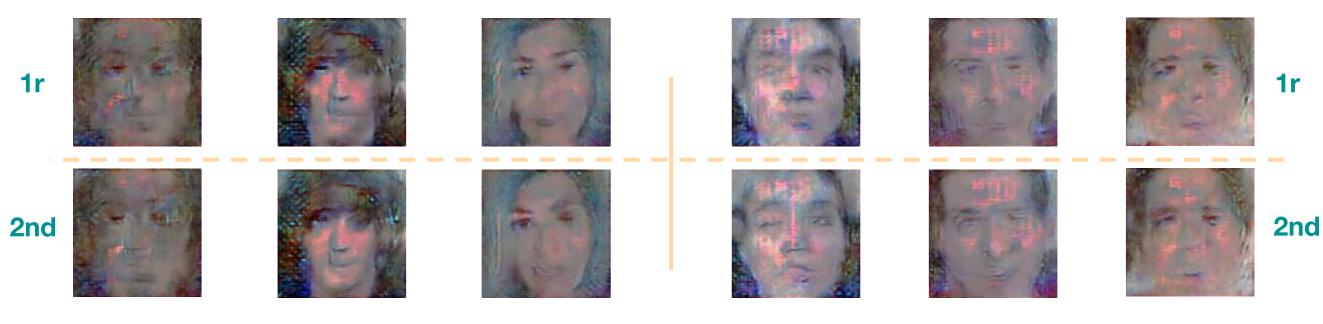


image generation for unseen voice

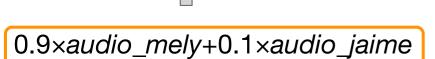


My voice

Piano music

The network does **not generalize** for unseen IDs!!

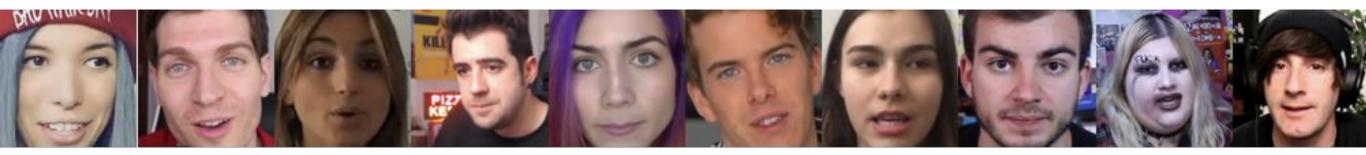
audio interpolation



0.4×audio_mely+0.6×audio_jaime

The network does not generate faces for audios which do not contain distinguishable voice. The model has learned to **identify speech** in audio frames

image generation for audio averages



The model performs a good **generalization** for **unseen** speech of **seen** IDs

CONCLUSIONS

Wav2Pix CONCLUSIONS

In comparison to Roldán et. al. network, our contributions allows the final model:

- Generate images of higher quality due to the network's capacity increase
- Generate more face-looking images for unseen speech
- Preserve the identity better for unseen speech
- Obtain better results with a **smaller dataset** (~70% smaller in terms of memory size)
- Obtain results that can be evaluated in terms of quality, face appearance and identity preservation with three different metrics

However,

- No generalization is achieved for unseen ID's X
- The dataset needs to be very clean in order to obtain notable results. The building process is very

