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INTRODUCTION FEATURE EXTRACTION APPLICATIONS

o We introduce the “Intonation” dataset of amateur vocal performances o Pre-filter tens of thousands of performances for basic score alignment Applications include:
o It contains public performances collected from Smule, Inc. o Summarize intonation patterns using low-dimensional set of features o Singing style analysis
o They are selected from a large database for tendency for good intonation o Compare frame-wise pitch analysis (pYIN) to MIDI score with 11ms. resolution o Informed source separation
o We describe the semi-supervised approach for choosing these performances o Deviations in Cents: f1+e o Query by humming
. . 1200 * log,
o This approach generalizes to other datasets fo + € Notes on the dataset:
o We compare the intonation distributions of the selected performances versus the Difference between MIDI and pYIN, two performances o Not every selected performance is in tune and not every other one is out of tune
remaining ones in the large collection 1000 - A i A o Good enough for many machine-learning applications
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2 ] o o Less common genres like Blues and Count erformances got left out
CUSTOM DATASETS g 0 L 9 | "y per S g .
- YER. o Excellent performances in these genres have a different pitch behavior (flatter)
o Scenario: A research topic in audio or music information retrieval is uncommon o w o They are in a different cluster
o Data is hard to find . . . . .
A subset of a huge dataset for another task is suitable : o FQOOO o o
° 7St J . emes INTONATION ANALYSIS
o Desired features are not labeled and can be hard to model Figure 2. frame-wise deviations in cents
o Manual filtering is labor intensive o Compare distributions of performances from selected clusters versus the others
o How can we automate the process? o Treat each performance’s deviations as a distribution o Same analysis as before, but keeping everything
o One approach involves feature extraction and clustering o Compute 31 evenly spaced quantiles * No absolute value
o Semi-automatic process 10k random sample of distances Sample quantiles No thr.esh.old at 200 c.ents . o _
o Reduces manual component to a manageable size 200~ ot A w0 ot A / o Dynamic time warping to align the MIDI and singing pitch
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o We wish to select “in-tune” performances from tens or thousands of performances T 50- o e 50 - PPl § 150 —— Selected (log) » §
o “Intune” is subjective N e o N : 25§
o We can measure pitch patterns across performances that we consider “in tune” 0 2500 5000 7500 10000 0 10 20 30 § 100} e
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o Directly defining a model is difficult - S
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o Intonation studies [1, 2] show frequent, deliberate deviations from the equal-tempered Figure 3. Sorted quantiles for two performances. S %0 9
scale . : i . 1°
_ , _ _ _ . _ The red one is included in the “Intonation” dataset. |
o Pitch also varies due to pitch bending, vibrato, natural characteristics of the voice, and T T L
harmonization SPECTRAL CLUSTERING Deviations (cents)
Aﬁiinwh o | | | A@zf ‘ ‘ ‘ ‘ o Cluster the quantized performances (Speclus algorithm [6]) Figure 6. Global histograms of singing pitch deviations from equal-tempered MIDI
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5 f 5 °f g P ) y graph ( J ) o Analyze distribution of positive versus negative deviations from the score
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