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Context

Deep Learning Success
State of the art in a number of domains (vision, speech, etc...)

Example in computer vision : plenty of different architectures.

AlexNet [Krizhevsky, Sutskever, and Hinton 2012]

ResNet [He et al. 2015]
DenseNet [Huang, Liu, and
Weinberger 2016]

Need for an automatic way to discover architectures
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Context

Existing approaches
Searches

Evolutionary methods
Learning

Example using Recurrent Neural Networks and Reinforcement
Learning:

Neural architecture search with RL, [Zoph and Le 2016]

Existing approaches limitations
Mainly focused on performance
Ignore real world constraints
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Context

Problematic

Architecture search under budget constraints

Contributions

New model : Budgeted Super Networks
Joint optimization on performance and inference cost

Costs : Time, Memory, Parallelization
Custom costs based on production infrastructure
No assumption on the cost nature
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Budgeted Super Networks



Super Networks

Definition
A Super Network is a DAG of layers (l1, ..., lN)

l1 is the input layer and lN is the output layer
E = {ei,j} ∈ {0, 1}N×N is the edge between li and lj and is
associated with function fi,j parametrized by θi,j

Inference

Input: l1(x ,E , θ) = x

Layer Computation: li (x ,E , θ) =
∑
k

ek,i fk,i (lk(x ,E , θ))

Output: f (x ,E , θ) = lN(x ,E , θ)

Learning can be done by back-propagation
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Super Networks

Super Network Inference

Algorithm 1: SN Forward
Data: x ,E , θ
l1 ← x ; // Init the first layer
for i ∈ [2..N] do

li ←
∑
k<i

ek,i fk,i (lk ; θk,i ) ; // Propagate through the
super network

end
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Budgeted Super Networks

Idea: Identifying a sub-network
Keep a good accuracy
Reduce cost

Figure 2: Convolutional Neural Fabrics [Saxena and Verbeek 2016]

Notation
H ∈ {0, 1}N×N such that H � E defines a (sub) Super Network
C (H � E ) the cost for computing f (x ,H � E , θ)
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Budgeted Super Networks

Learning under budget constraints

H∗, θ∗ = arg min
H,θ

1
`

∑
i

∆(f (x i ,H � E , θ), y i),

under constraint : C (H � E ) ≤ C

Soft version

H∗, θ∗ = arg min
H,θ

1
`

∑
i

∆(f (x i ,H � E , θ), y i)

+ λmax(0,C (H � E )− C)
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Budgeted Super Networks

Combinatorial Problem

How to explore the discrete architecture space ?
How to handle the unknown cost function C (H � E ) ?

Idea

Reformulate the learning problem as a stochastic problem.
Apply Reinforcement Learning techniques to overcome the
combinatorial problem.
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Budgeted Super Networks

Stochastic Super Network
We consider a matrix of probabilities Γ

At each inference, H is sampled following H ∼ Γ

Stochastic Super Network Inference

Algorithm 2: SSN Forward
Data: x ,E , Γ, θ
H ∼ Γ ; // Sample an architecture
l1 ← x ;
for i ∈ [2..N] do

li ←
∑
k<i

ek,ihk,i fk,i (lk ; θk,i ) ; // Propagate through the
sampled network

end
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Budgeted Super Networks

Stochastic learning problem

Γ∗, θ∗ = arg min
Γ,θ

1
`

∑
i

EH∼Γ

[
∆(f (x i ,H � E , θ), y i )

+ λmax(0,C (H � E )− C)

]

Solving this problem is equivalent to solving the original
constrained problem.
Can be optimized by SGD using REINFORCE.
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Budgeted Super Networks

Deriving the stochastic learning problem

Let us define:

D(x , y , θ,E ,H) = ∆(f (x ,H � E , θ), y) + λmax(0,C (H � E )− C)

L(x , y ,E , Γ, θ) = EH∼Γ [D(x , y , θ,E ,H)]

We have:
∇θ,ΓL(x , y ,E , Γ, θ) =

∑
H

P(H|Γ) [(∇θ,Γ logP(H|Γ))D(x , y , θ,E ,H)]

+
∑
H

P(H|Γ) [∇θ,Γ∆(f (x ,H � E , θ), y)]
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SANAS

From static

L(x , y ,E , Γ, θ) = EH∼Γ [∆(f (x ,H � E , θ), y) + λmax(0,C (H � E )− C)]

To dynamic

L(x , y , θ) = EA
[ #x∑
t=1

[∆(f (zt , xt , θ,At), yt) + λC (At)]
]
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SANAS

General Model
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Figure 3: SANAS Architecture unrolled on sequence of length K .
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SANAS

Keyword Spotting - Speech Commands Dataset [Warden 2018]

65000 short audio clips
30 common words
12 classes

Streaming dataset
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SANAS

Keyword Spotting - Model

based on cnn-trad-fpool3 [Sainath and Parada 2015]
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Figure 4: SANAS architecture for Keyword Spotting
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SANAS

Quantitative results

Match Correct Wrong FA FLOPs per frame
cnn-trad-fpool3

81.7% 72.8% 8.9% 0.0% 124.6M
cnn-trad-fpool3 + shortcut connections

82.9% 77.9% 5.0% 0.3% 137.3M
SANAS

61.2% 53.8% 7.3% 0.7% 519.2K
62.0% 57.3% 4.8% 0.1% 22.9M
86.5% 80.7% 5.8% 0.3% 37.7M
86.3% 80.6% 5.7% 0.2% 48.8M
81.7% 76.4% 5.3% 0.1% 94.0M
81.4% 76.3% 5.2% 0.2% 105.4M

Table 1: Evaluation of models on 1h of audio.
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SANAS

Quantitative results

0 20 40 60 80 100 120 140
0.4

0.5

0.6

0.7

0.8

SANAS

cnn-trad-fpool3

cnn-trad-fpool3 + shortcuts

FLOPs per frame (millions)

A
cc

ur
ac

y

Figure 5: Cost/accuracy curves on test set.
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SANAS

Training dynamics
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Figure 6: Cost per word during training
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SANAS

Perspectives

Use new models (Currently training on Resnets)
Test other sound datasets
Evaluate over different tasks (Video, Event detection, RL ...)
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