Aalto University
School of Electrical

Engineering Filip Tronarp & Simo Sarkka

Updates in Bayesian filtering by Continuous
Projections on a Manifold of Densities

Department of Electrical Engineering and Automation, Aalto University, Finland

Problem formulation

Continuous-discrete filtering problem:
dX (?) = p(X(¢),t)dt + o(X(2),t)dB(¢),

Y (20) | X (&) ~ f(y(£n) | X (E2)).

How to approximate Bayes’ rule?
px(t,) | #(t,)) o< f(y(E,) | x(2,)p(x(t,) | 2(2)))

Some Information Geometry

* # be a set of probability densities on 2 < R? then p'? belongs to a
sub-manifold of .#? (unit sphere).

* For a parametric susbset, 29 € 2, then py, 0 € ® c R” belongs to a

sub-manifold of the unit sphere.

o J[f v = %p é/ u € #%, then its projection onto the tangent space at 6 is

ogiven by [1, Lemma 2.1]

1
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where g(0) is the Fisher information matrix.

* In general the projection of
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onto the parametric sub-manifold is given by [1]
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The Projection Update (PU)

* Let mg, € 29 be some prior and f(y | x) = exp(¢(x)) be some likelihood
then the posterior is

f(y|x)mg,(x)
[o F(y 1 2)mg () dc

* Differentiable mapping from né{) 2(x) to m%(x | y):

(x| y) =

x|y (u) = %(f(x) ~E2l0X)Du, ues? (5a)
0 p7 (x| y) = oy (py (x| y)), T €[0,1] (5b)
* The projection update is defined by

0:P = Moy o xv(Bg), Doy =T, - (6)

— 7 1s an exponential family with sufficient statistic 7'(X):
0,0(1) = [g(0(1)] 'C.[T(X), (X)) (7)

— 2¢ 18 the Gaussian family:

0rp = E[(X - w) (X)), (8a)
0,2 = E,[(X — )X — ) (0(X) —ELLX)D]. (8b)

e Exact updates when an exponential (including Gaussian) family #g
1s conjugate prior to the likelihood (Theorem 1 & 2 in the paper).

Conclusions

* A curve from prior to posterior can be defined and projected onto a
manifold of densities, giving rise to projection updates.

* The method provides an effective way to for Bayesian updates with

non-Gaussian likelihoods.
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Results I: Wiener Velocity with Outlier
Measurements

X (t) follows a Wiener velocity model and is measured by
Y (t,) = [0,151X (t,) + R, *V,,.

where R, = Ry =1 with probability 1 — a and R, = 20Ry. As in [2]
(MM) the noise is modelled with a Laplace distribution and the pro-
jection update (PU) is compared with (MM) and a Kalman filter (KF)
using R, = Ry. RMSE for position is shown in Figure 1.
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Figure 1. a = 0.2/0.4 for figure above/below.

Results 1I1: Stochastic Volatility

dX(¢) = -AMX(¢)—m)dt +oB(2),
Y (t,) =exp(X(t,)/2)V,, V, ~A&(0,1).

The initial condition is Gaussian with moments E[X (0)] = V[X(0)]=1
and 0 = m = 1. We compare PU to Laplace approximation (LA) and a
Kalman filter (KF) with transformed measurements (see [3]). RMSE
1s shown in Figure 2.
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Figure 2. 1 =0.5/0.1 for figure above/below.
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