MULTI-GEOMETRY SPATIAL ACOUSTIC MODELING FOR DISTANT SPEECH RECOGNITION
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Abstract Our Far-field ASR system
Goal:
* Building a single acoustic model that can cover multiple array geometries

 Weiinitialize the multi-channel input layer with beamformers’ weights calculated with different array configurations.

* Making the model optimal for far-field automatic speech recognition (ASR) « The multi-geometry front-end is cascaded to and phone classifier without any speech reconstruction layer.

* Achieving real-time processing without any non-causal processing pass

Our approach:

. . : , , _ discrimination error.
 Extending our work [1] (being presented in the same session) so as to model multiple array geometries and

e The whole network is jointly optimized with array data of multiple geometries so as to minimize the phone

* Training the multi-geometry array front-end and phone classifier jointly with the real-world data.
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Elastic SF (ESF) Net

See also the papers for more details.

Weight tied SF (WTSF) net

To Feature Extraction DNN
Our strategy :
Relu

 We architect the neural network so as to model multiple array geometry structures; the multi-geometry network will be 7
trained with multi-geometry array data so as to maximize the phone classification error. Affine Transform
* Everything will be learned from the real far-field data so that it neither requires supervised signal or adaptation data. 1

* |n contrast to conventional multi-style training, it will embedded the sound propagation model into the network. POX"er
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v’ The WTSF net applies the same weight to all the frequency bins and picks the array output with the maximum

* Notice that the WTSF net can reduce the number of parameters significantly.

ASR Experiments

* We used approximately 1100 hours of speech spoken by human beings, collected with the 7 microphone circular array in various
rooms and split 1,000 and 100 hours into training and test sets where there is no overlapping speaker between sets

e Part of data are captured through a Live traffic where the interactions between the user and devices were completely

unconstrained;
v Users may move while speaking to the device.
v’ Talker’s position may change after each utterance.

 We observed that real-time adaptive beamforming degraded recognition accuracy due to steering errors [1]; we omit results of

adaptive beamforming.
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Robustness against unseen array geometry

Modeling method No. channels | No. mismatched WERR (%)
sensor locations SNR>15 | 5<SNR < 15 SNR<5
LFBE with single mic. 1 0 — - —
LFBE with SD BF 7 0 8.2 (—) 7.8 (-) 4.9 (-)
ESF with single geometry data 2 0 12.3 (4.5) 16.5(9.5) 11.1 (6.6)
2 1 10.0 (2.0) 15.0 (7.8) 9.8 (5.2)
ESF with single geometry data 4 0 16.4 (9.0) 21.7 (15.1) 15.5(11.2)
4 1 13.7 (6.0) 20.9 (14.3) 15.2 (10.9)
4 2 6.8 (-1.5) 12.4 (5.0) 94 (4.8)
ESF with multi-geometry data: 2 0 11.6 (3.7) 16.7 (9.7) 11.4 (6.9)
2 sets of microphone spacing 2 1 10.3 (2.2) 16.0 (9.0) 11.0 (6.5)
WTSF with multi-geometry data: 2 0 12.1 (4.2) 17.1 (10.1) 12.3 (7.8)
2 sets of microphone spacing 2 1 11.0 (3.0) 16.0 (9.0) 11.8 (7.2)

* The recognition accuracy largely degrades in the mismatched geometry condition when the single geometry data are only used for

training.

* Multi-geometry model can still maintain good accuracy in the mismatched geometry condition.

 The WTSF architecture achieve the best accuracy with a much less number of parameters than the fully-connected ESF network.

Coverage of different 4-channel array configuration
* There is significant degradation in the mismatched array configuration

condition in the case of the single array geometry model.

* The degradation can be avoided by training the multi-geometry model.

TShe number in () indicates a dissimilarity index between two arrays which can be expressed as
E|d<l> _d® | where 4% is the distance between the s" and the reference sensors of the i*" array.
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Steering response power (SRP) w.r.t. a direction of arrival

WTF) for two-channel input.

the filter strengthens or attenuates a signal coming from a
particular direction.

Notice that the ESF network will combine the spatial filters with
weights in a soft-decision manner so as to maximize the phone
classification accuracy; it may permute a look direction among

different frequencies. it also tends to amplify the signal.

The WTF network can avoid such a look direction inconsistency

problem although it did not lead to recognition accuracy
improvement.

Conclusion
* The fully-learnable multi-channel AM can learn multiple types of microphone array geometry.

The left figure shows the SRP of SD beamforming (SD-BF), multi-
geometry ESF (MG-ESF) and multi-geometry WTSF net (MG- Polar

Each line indicates the directivity of the spatial filter, how much

Microphone spacing = 36.38 mm
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* The multi-channel neural network trained with multi-array data can alleviate the mismatch between different array shapes.

 The model is also optimal in terms of speech recognition.

* The method neither requires adaptation process nor any bi-directional processing pass.




