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Motivation

Imagine that you are a robot chef (in a kitchen) ...

e Humans quickly learn new words and object categories from one or a few
examples.

e Artificial agents should do the same, yet current speech and vision processing
algorithms require thousands of labelled examples to complete a similar task.

e One-shot learning: acquisition of novel concepts from a single labelled example.

e Different to the above example, since you directly associate visual signals to
spoken words without class labels, and generalise to new visual/spoken instances!

e Multimodal one-shot learning: a new task we formalise, where agents learn
novel concepts from a single example of co-occurring multimodal sensory inputs.
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Multimodal One-Shot Learning and Matching
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Multimodal one-shot learning

Multimodal one-shot classification

e Multimodal one-shot learning on a dataset of spoken digits paired with images.

e At test time, a model must match a test query in one modality to the matching
item in a test (or matching) set in the other modality.

e This is done using information from the support set, where neither the query nor
the matching set instances occur in the support set.
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Experimental details

e Simple benchmark dataset: one-shot learning from spoken digits paired with
handwritten digit images.
Speech: TIDigits corpus of spoken digit sequences split into isolated digits.
Images: MNIST handwritten digits dataset.

e Treat utterances labelled “oh™ and “zero” as separate classes — 11 class labels.

e Models evaluated on one-shot task accuracy averaged over 400 test episodes.

One-shot speech classification

11-way one-shot and five-shot speech classification results on isolated spoken digits.

Model 11-way Accuracy

Train time .
five-shot

91.30% =+ 0.20
89.49% + 0.45
93.58% + 0.98

95.12% =+ 0.37
97.65% + 0.22

one-shot

67.99% + 0.29
71.39% =+ 0.81
82.07% =+ 0.92

89.40% =+ 0.54
92.85% + 0.38

DTW —
FFNN CLASSIFIER 13.1m
CNN CLASSIFIER 60.6m

70.5m
15.0m

SIAMESE CNN (OFFLINE)
SIAMESE CNN (ONLINE)

One-shot matching of speech to images

11-way one- and five-shot cross-modal matching of spoken and visual digits.
Speaker invariance tests are 11-way one-shot, where all support set items are from
the same speaker as the query, except for the item actually matching the query.

Model 11—wz_ay Accuracy
five-shot

44.46% =+ 0.69
44.29% =+ 0.56
63.97% =+ 0.91

70.92% =+ 0.36
73.53% =+ 0.52

one-shot

34.92% 4 0.42
36.49% =+ 0.41
56.47% + 0.76

67.41% =+ 0.56
70.12% =+ 0.68

speaker invariance

28.00% 4 1.86
34.95% + 2.28
53.71% + 2.2

66.70% =+ 0.92
69.73% + 1.04

DTW 4+ PIXELS
FFNN CLASSIFIER
CNN CLASSIFIER

SIAMESE CNN (OFFLINE)
SIAMESE CNN (ONLINE)
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Our approach
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Multimodal one-shot learning Multimodal one-shot matching
e (Cross-modal test-time matching via unimodal comparisons with the support set.
e Assumes we can measure within modality similarity — unimodal one-shot learning!
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Metric learning from background data
Omniglot labelled characters (no digits):
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Isolated labelled words (no digits):
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Neural network models for metric learning

Classifier network: Siamese triplet network:
— d(Y1,Y2:Y3) distance
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Conclusions

e |ntroduced and formalised multimodal one-shot learning, specifically for learning
from speech and images.

e Developed a one-shot cross-modal matching dataset that may be used to
nenchmark other approaches.

e Unimodal one-shot learning approaches may be used for this task, but result in
compounding errors through successive unimodal comparisons.

e Future: explore methods that can directly match one modality to another,
particularly looking into recent meta-learning approaches.

e Full code recipe available at:
https://github.com/rpeloff/multimodal _one_shot_learning
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