A Recursive Least-Squares Algorithm Based on the Nearest Kronecker Product Decomposition

Camelia Elisei-Iliescu ${ }^{1}$, Constantin Paleologu ${ }^{1}$, Jacob Benesty ${ }^{2}$, and Silviu Ciochina ${ }^{1}$
${ }^{1}$ Department of Telecommunications University Politehnica of Bucharest, Romania \{pale, silviu\}@comm.pub.ro
${ }^{2}$ INRS-EMT
University of Quebec, Montreal, Canada benesty@emt.inrs.ca

Outline

- Introduction
- System Model
- RLS algorithm based on the nearest Kronecker product decomposition (RLS-NKP)
- Simulation Results
- Conclusions and Perspectives

Introduction

- Recursive least-square (RLS) algorithm \rightarrow frequently used in system identification problems
\rightarrow this algorithm is computationally very complex
- In this work \rightarrow new approach to improve the efficiency of the RLS \rightarrow the impulse response decomposition based on the nearest Kronecker product
\rightarrow low-rank approximation
- Target: a high-dimension system identification problem

low-dimension problems
\rightarrow RLS algorithm based on the nearest Kronecker product decomposition

System Model

Model

$$
d(t)==_{-}^{\prime} \underline{\underline{h}}^{T} \mathbf{x}(t)+w(t)
$$

where $d(t)$ - desired signal $w(t)$ - additive noise
$\rightarrow \mathbf{h}$ is the impulse response of the unknown system of length $L=L_{1} L_{2}\left(L_{1} \geq L_{2}\right)$.
\rightarrow The impulse response can be decomposed as:

$$
\mathbf{h}=\left[\begin{array}{llll}
\mathbf{s}_{1}^{T} & \mathbf{s}_{2}^{T} & \ldots & \mathbf{s}_{L_{2}}^{T}
\end{array}\right]^{T}
$$

where $\mathbf{s}_{l}, l=1,2, \ldots, L_{2}$ - short impulse responses (of length L_{1}) \rightarrow ? \mathbf{h} can be approximated as $\mathbf{h}_{2} \otimes \mathbf{h}_{1}^{\prime}$
($\mathbf{h}_{2}^{-}-$length L_{2}, \mathbf{h}_{1} - length L_{1})
\rightarrow The normalized misalignment:

$$
\mathcal{M}\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)=\frac{\left\|\mathbf{h}-\mathbf{h}_{\mathbf{2}} \otimes \mathbf{h}_{\mathbf{1}}\right\|_{2}}{\|\mathbf{h}\|_{2}}
$$

System Model

\rightarrow We can reorganize the components of \mathbf{h} into a matrix:

$$
\begin{gathered}
\mathbf{H}=\left[\begin{array}{llll}
\mathbf{s}_{1} & \mathbf{s}_{2} & \ldots & \mathbf{s}_{L_{2}}
\end{array}\right] \\
\mathcal{M}\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)=\frac{\left\|\mathbf{H}-\mathbf{h}_{1} \mathbf{h}_{2}^{T}\right\|_{\mathrm{F}}}{\|\mathbf{H}\|_{\mathrm{F}}} .
\end{gathered}
$$

\rightarrow The optimal values of \mathbf{h}_{1} and $\mathbf{h}_{2} \Longrightarrow$ minimization of $\mathcal{M}\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)$
\rightarrow Minimizing $\mathcal{M}\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right) \Leftrightarrow$ finding the nearest rank-1 matrix to \mathbf{H}

$$
\begin{aligned}
& \rightarrow \underset{H}{\mathbf{H}=\mathbf{U}_{1} \Sigma \mathbf{U}_{2}^{T}=\sum_{l=1}^{L_{2}} \sigma_{l} \mathbf{u}_{1, l} \mathbf{u}_{2, l}^{T}, ~} \\
& \overline{\mathbf{h}}(P) \approx \sum_{p=1} \overline{\mathbf{h}}_{2, p} \otimes \overline{\mathbf{h}}_{1, p}=\sum_{L_{2}}{ }_{L_{1}} \sigma_{p=1} \mathbf{u}_{2, p} \otimes \mathbf{u}_{1, p}
\end{aligned}
$$

System Model

$$
\xi_{12}(\mathbf{h})=\frac{L}{L-\sqrt{L}}\left(1-\frac{\|\mathbf{h}\|_{1}}{\sqrt{L}\|\mathbf{h}\|_{2}}\right)
$$

(a)

(b)

Impulse responses with $L=500\left(L_{1}=25, L_{2}=20\right)$:
(a) $\xi_{12}=0.8835$ and $\operatorname{rank}(\mathbf{H})=1$; (b) $\xi_{12}=0.8835$ and $\operatorname{rank}(\mathbf{H})=4 . \quad 6$

RLS algorithm based on the nearest Kronecker product decomposition

\rightarrow The goal is to estimate \mathbf{h} with an adaptive filter $\hat{\mathbf{h}}(t)$
\rightarrow The error signal:

$$
e(t)=d(t)-\hat{y}(t)=d(t)-\hat{\mathbf{h}}^{T}(t-1) \mathbf{x}(t)
$$

\rightarrow We can decompose the adaptive filter:

$$
\begin{gathered}
\hat{\mathbf{h}}(t)=\sum_{p=1}^{P} \hat{\mathbf{h}}_{2, p}(t) \otimes \hat{\mathbf{h}}_{1, p}(t) \\
L_{2}^{\prime}
\end{gathered}
$$

RLS algorithm based on the nearest Kronecker product decomposition

\rightarrow The cost functions:

$$
\begin{array}{r}
\mathcal{J}_{\hat{\mathbf{h}}_{2}}\left[\hat{\mathbf{h}}_{1}(t)\right]=\sum_{i=1}^{t} \lambda_{1}^{t-i}\left[d(i)-\underline{\hat{\mathbf{h}}}_{1}^{T}(t) \underline{\mathbf{x}}_{2}(i)\right]^{2} \\
\mathcal{J}_{\hat{\mathbf{h}}_{1}}\left[\underline{\mathbf{h}}_{2}(t)\right]=\sum_{i=1}^{t} \lambda_{2}^{t-i}\left[d(i)-\underline{\hat{\mathbf{h}}}_{2}^{T}(t) \underline{\mathbf{x}}_{1}(i)\right]^{2} \\
\lambda_{1}, \lambda_{2} \text {-forgetting factors }
\end{array}
$$

Normal equations

$$
\begin{aligned}
& \underline{\mathbf{R}}_{2}(t) \underline{\mathbf{h}}_{1}(t)=\underline{\mathbf{p}}_{2}(t) \\
& \mathbf{R}_{1}(t) \hat{\mathbf{h}}_{2}(t)=\mathbf{p}_{1}(t)
\end{aligned}
$$

where $\underline{\mathbf{R}}_{2}(t)=\lambda_{1} \underline{\mathbf{R}}_{2}(t-1)+\underline{\mathbf{x}}_{2}(t) \underline{\mathbf{x}}_{2}^{T}(t) \quad \underline{\mathbf{p}}_{2}(t)=\lambda_{1} \mathbf{p}_{2}(t-1)+\underline{\mathbf{x}}_{2}(t) d(t)$

$$
\underline{\mathbf{R}}_{1}(t)=\lambda_{2} \underline{\mathbf{R}}_{1}(t-1)+\underline{\mathbf{x}}_{1}(t) \underline{\mathbf{x}}_{1}^{T}(t) \quad \underline{\mathbf{p}}_{1}(t)=\lambda_{2} \underline{\mathbf{p}}_{1}(t-1)+\underline{\mathbf{x}}_{1}(t) d(t)
$$

\rightarrow The RLS-NKP: $\underline{\hat{\mathbf{h}}}_{1}(t)=\underline{\hat{\mathbf{h}}}_{1}(t-1)+\mathbf{k}_{2}(t) e(t)$

$$
\underline{\hat{\mathbf{h}}}_{2}(t)=\underline{\hat{\mathbf{h}}}_{2}(t-1)+\mathbf{k}_{1}(t) e(t)
$$

RLS algorithm based on the nearest Kronecker product decomposition
\rightarrow The Kalman gain vectors:

$$
\begin{aligned}
& \mathbf{k}_{2}(t)=\frac{\underline{\mathbf{R}}_{2}^{-1}(t-1) \underline{\mathbf{x}}_{2}(t)}{\lambda_{1}+\underline{\mathbf{x}}_{2}^{T}(t) \underline{\mathbf{R}}_{2}^{-1}(t-1) \underline{\mathbf{x}}_{2}(t)} \\
& \mathbf{k}_{1}(t)=\frac{\underline{\mathbf{R}}_{1}^{-1}(t-1) \underline{\mathbf{x}}_{1}(t)}{\lambda_{2}+\underline{\mathbf{x}}_{1}^{T}(t) \underline{\mathbf{R}}_{1}^{-1}(t-1) \underline{\mathbf{x}}_{1}(t)}
\end{aligned}
$$

\rightarrow The updates of $\underline{\mathbf{R}}_{1}^{-1}(t)$ and $\underline{\mathbf{R}}_{2}^{-1}(t)$ (based on the inversion lemma):

$$
\begin{aligned}
& \underline{\mathbf{R}}_{2}^{-1}(t)=\lambda_{1}^{-1}\left[\underline{\mathbf{R}}_{2}^{-1}(t-1)-\mathbf{k}_{2}(t) \underline{\mathbf{x}}_{2}^{T}(t) \underline{\mathbf{R}}_{2}^{-1}(t-1)\right] \\
& \underline{\mathbf{R}}_{1}^{-1}(t)=\lambda_{2}^{-1}\left[\underline{\mathbf{R}}_{1}^{-1}(t-1)-\mathbf{k}_{1}(t) \underline{\mathbf{x}}_{1}^{T}(t) \underline{\mathbf{R}}_{1}^{-1}(t-1)\right]
\end{aligned}
$$

RLS algorithm based on the nearest Kronecker product decomposition

Computational complexities of the regular RLS and RLS-NKP algorithms

$$
\left(L=500, \text { with } L_{1}=25 \text { and } L_{2}=20\right)
$$

Simulation Results

- conditions
$\rightarrow \mathrm{h}$ - echo paths from G168 Recommendation, random impulse responses $(L=500)$, and an acoustic echo path $(L=$ 1024)
\rightarrow input signals - AR1(0.9) process/ speech sequence
\rightarrow additive noise $w(t)-\mathrm{WGN}(\mathrm{SNR}=20 \mathrm{~dB})$
\rightarrow measures of performance: normalized misalignment (NM)

$$
\mathrm{NM}[\mathrm{~dB}]=20 \log _{10} \frac{\|\mathbf{h}-\hat{\mathbf{h}}(t)\|_{2}}{\|\mathbf{h}\|_{2}}
$$

- algorithms
\rightarrow proposed RLS algorithm based on the nearest Kronecker product decomposition - RLS-NKP $\left(\lambda_{1}=1-1 /\left[K\left(P L_{1}\right)\right], \lambda_{2}=1-1 /\left[K\left(P L_{2}\right)\right]\right)$
\rightarrow regular RLS $[\lambda=1-1 /(K L)$, with $K>1]$
\rightarrow RLS-DCD [Y. V. Zakharov, Low-Complexity RLS using dichotomous coordinate descent iterations, IEEE Trans. Signal Process., 2008] ${ }^{11}$

Fig. 1. Impulse responses used in the experiments: (a) $L=500, \xi_{12}=0.8957$, (b) $L=500, \xi_{12}=0.8080$, (c) $L=500, \xi_{12}=0.7549$, (d) $L=500, \xi_{12}=0.6867$, and (e) $L=1024, \xi_{12}=0.6880$.

Fig. 2. Singular values (normalized with respect to the maximum one) of the matrix \mathbf{H} for the corresponding impulse responses from Fig.1. The size of matrix \mathbf{H} is $L_{1} \times L_{2}$. (a)-(d) $L_{1}=25$ and $L_{2}=20$; (e) $L_{1}=L_{2}=32$.

Fig. 3. Normalized misalignment of the regular RLS and RLS-DCD algorithms ($L=500$), and RLS-NKP algorithm (using $L_{1}=25, L_{2}=20$, and $\mathrm{P}<L_{2}$), for the identification of the impulse responses from Figs. 1(a) and (b). The input signal is an AR(1) process and the impulse response changes at times 3 and 6 seconds.

Fig. 4. Normalized misalignment of the regular RLS and RLS-DCD algorithms ($L=500$), and RLS-NKP algorithm (using $L_{1}=25, L_{2}=20$, and $\mathrm{P}<L_{2}$), for the identification of the impulse responses from Figs. 1(c) and (d). The input signal is an $\operatorname{AR}(1)$ process and the impulse response changes at times 3 and 6 seconds.

Fig. 5. Normalized misalignment of the RLS algorithm ($L=$ 1024) and RLS-NKP algorithm (using $L_{1}=L_{2}=32$, and $\mathrm{P}<L_{2}$), for the identification of the impulse responses from Figs. 1(e). The input signal is a speech sequence and the impulse response changes at time 5 seconds.

Conclusions and Perspectives

- We have proposed the RLS-NKP algorithm.
- Suitable for the identification of low-rank models, like the echo paths.
- The tracking capabilities of the of the RLS-NKP algorithm are better as compared to the conventional RLS algorithm.
- The computational complexity of the proposed algorithm could be much lower as compared to the RLS.
C. Elisei-Iliescu, C. Paleologu, J. Benesty, C. Stanciu, C. Anghel, and S. Ciochină, "Recursive Least-Squares Algorithms for the Identification of Low-Rank Systems," IEEE/ACM Trans. Audio, Speech, Language Process., May 2019.

