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Introduction

* Recursive least-square (RLS) algorithm - frequently used
in system identification problems

- this algorithm is computationally very complex

* In this work = new approach to improve the efficiency of the
RLS - the impulse response decomposition based on the nearest
Kronecker product

- low-rank approximation

* Target: a high-dimension system identification problem

low-dimension problems

- RLS algorithm based on the nearest Kronecker product
decomposition



System Model
Model

d(t) =hTx(6) + w(t) where d(t) - desi.r.ed Sigpal
~- w(t) - additive noise

- h is the impulse response of the unknown system of length
L= Lle(Ll = Lz)
- The impulse response can be decomposed as:
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System Model

= We can reorganize the components of h into a matrix:

— [Sl Sz SLZ]
|H — hyh]|
M(h,,h,) = E
(hah2) =T

- The optimal values of h; and h; = minimization of
M (hlJ hZ)

- Minimizing M (h4, h,) <= finding the nearest rank-1
matrix to H

@ H = U1ZUT = ZlL 1011111“;1



System Model
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Impulse responses with L = 500(L; = 25, L, = 20):
(a) &1, = 0.8835 and rank(H) = 1; (b) {;, = 0.8835 and rank(H) = 4.



RLS algorithm based on the nearest
Kronecker product decomposition

- The goal is to estimate h with an adaptive filter h(t)
- The error signal:

e(t) = d(t) — () = d(t) — h' (¢t — Dx(t)
- We can decompose the adaptive filter:

h(t) = Z by, (D@ by (0

Pl/ /
Ly

e(t) =d() —¥b_ bl (t - 1)xz,p(t) = d(t) —h](t — Dx,(t)
e(t) =d(t) - Zp BTt = Dxy,(0) = d(0) —hI(t — Dx,(0)
[th(t 1)®IL1] x(t) h1(t)=[ilg,1(t) B{,z(t) BI,P (t)]T
xlp [1,,®h, (¢t — D] x(2) ho () = [h,(® Wl .. W, ]
() = [x[,(0) x[,(0) .x[p®] %0 =[x[;(®) x,©) .xL0)]



RLS algorithm based on the nearest
Kronecker product decomposition

- The cost functions:
3 ¥ S 12
T, [0 (O] = iy 247 [d (@) — b (0%, ()]

5 T % 12
~7h1 [hz (t)] = f At_l[d(l) — hT(t)X1(l)]
/11, As - forgettmg factors

Normal equations Rz (HOh,(t) = pz(t)
' R1(t)h2(t) = p1(t)

where R,(t) = ;Ry(t — 1) + x,(0)x} O "pa(6) = Tapalt — T x0d(0)
R,(t) = ;R (t — 1) + x; (O)xT () 21(1') = /1221(15 — 1) + x,(t)d(t)

by (0) = hy (¢ — 1) + ky(De(t)
h,(£) = hy(t — 1) + ky(t)e(t)

- The RLS-NKP:



RLS algorithm based on the nearest
Kronecker product decomposition

- The Kalman gain vectors:
R;M(t — 1x,(t)
k2 (t) = _Tz —1 =
A1+ X5 (DR (8 — 1)x(2)
Ri'(t — x4 (¢)
Az + X1 (DR (t = x4 (8)

k,(t) =

- The updates of R7*(t) and R3*(t) (based on the inversion
lemma):

R71(t) = 7R3Nt — 1) — K, (O)xF (ORIt — 1]
R7I(t) = A2 R7Y(t — 1) — k (OxT (ORIt — 1]



RLS algorithm based on the nearest
Kronecker product decomposition
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Simulation Results

e conditions

- h - echo paths from G168 Recommendation, random

impulse responses (L = 500), and an acoustic echo path (L =
1024)

- input signals - AR1(0.9) process/ speech sequence
- additive noise w(t) - WGN (SNR=20 dB)
—> measures of performance: normalized misalignment (NM)

Ih—h@]|,

: h
« algorithms il

—> proposed RLS algorithm based on the nearest Kronecker product
decomposition - RLS-NKP(4; =1 —-1/[K(PL1)], A, =1—1/[K(PL,)])

- regular RLS [A =1 - 1/(KL), with K > 1]

NM[dB] — 20 10810

- RLS-DCD [Y. V. Zakharov, Low-Complexity RLS using dichotomous
coordinate descent iterations, IEEE Trans. Signal Process., 2008]
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Fig. 1. Impulse responses used in the experiments: (a) L = 500,&;, = 0.8957, (b)
L =500,&;, = 0.8080, (c) L =500,&;,, =0.7549, (d) L =500,¢,, = 0.6867, and
(e) L =1024,&,, = 0.6880.
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Fig. 2. Singular values (normalized with respect to the maximum one) of the matrix H
for the corresponding impulse responses from Fig.1. The size of matrix His L, X L,.
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Fig. 3. Normalized misalignment of the regular RLS and RLS-DCD algorithms
(L = 500), and RLS-NKP algorithm (using L; = 25,L, = 20,and P < L,), for the
identification of the impulse responses from Figs. 1(a) and (b). The input signal is an
AR(1) process and the impulse response changes at times 3 and 6 seconds.
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Fig. 4. Normalized misalignment of the regular RLS and RLS-DCD algorithms
(L = 500), and RLS-NKP algorithm (using L; = 25,L, = 20,and P < L,), for the
identification of the impulse responses from Figs. 1(c) and (d). The input signal is
an AR(1) process and the impulse response changes at times 3 and 6 seconds.

15



~~~RLS-NKP, P =10
— = -RLS-NKP, P = 12
——RLS-NKP, P=15

Normalized misalignment (dB)

\ :

-20 | | ] |
0 2 o4 6 8 10

Time (seconds)

Fig. 5. Normalized misalignment of the RLS algorithm (L = 1024) and RLS-NKP
algorithm (using L, = L, = 32,and P < L,), for the identification of the impulse

responses from Figs. 1(e) . The input signal is a speech sequence and the impulse
response changes at time 5 seconds.
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Conclusions and Perspectives

* We have proposed the RLS-NKP algorithm.

e Suitable for the identification of low-rank models, like
the echo paths.

* The tracking capabilities of the of the RLS-NKP algorithm

are better as compared to the conventional RLS algorithm.

* The computational complexity of the proposed algorithm
could be much lower as compared to the RLS.
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