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Objectives

This model-driven steganographic scheme is inspired by MG (multivari-
ate Gaussian model)[4] and MiPOD (minimizing the power of optimal
detector)[8]. This scheme is based on multivariate Gaussian model of im-
age residuals, instead of pixels in MG. This scheme is abbreviated as
MGR. And, this scheme estimates variances by using a simple method
instead a complex one in MiPOD.

– Image residuals are obtained by filtering an image with high-pass fil-
ters.

– Steganalysis benefits from extracting effective features from image
residuals. Modeling image residuals, we aim to better preserve the sta-
tistical model of an image.

– Model image residuals as zero-mean quantized multivariate Gaussian
distributions. The distribution of stego image residuals can be approx-
imately derived from the embedding change probabilities associated
with pixels.

– Fisher information (FI) can be efficiently obtained by using the esti-
mated local variance of residuals and the corresponding high-pass filter
coefficients. We select the optimal FI from a set of FIs.

– The proposed scheme performs well and has low computation com-
plexity.
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FIGURE 1: The processing pipeline of the proposed MGR scheme.

1. Residual model
– Let Y = X + N, where X, Y and N are the cover image, the stego

image and the embedding changes, respectively. Image residuals are
obtained as :

(1) ηY = Y ⊗H = (X +N )⊗H = ηX +N ⊗H .

– The 2-D high-pass filter is formed as :

(2) H =

a11 · · · a1S

· · · · · · · · ·
aR1 · · · aRS

 , auv ∈ Z,
R∑
u=1

S∑
v=1

auv = 0.

– Model residuals as zero-mean quantized multivariate Gaussian dis-
tributions ηXi

∼ Q∆(N(0, νi)). Let the symbols p(i) = {p(i)
j } and

q(i) = {q(i)
j } (j ∈ M) to denote the probability mass function (PMF)

of ηXi
and that of ηYi, respectively.

(3) qj ≈ (1− 2βi)pj +
βi

R× S
R∑
u=1

S∑
v=1

(pj+auv + pj−auv).

– For a large n and small embedding change probabilities βi, the total
KL divergence between the cover and the stego can be approximated
by :

(4)
n∑
i=1

DKL(p(i)||q(i)) =
1

2

n∑
i=1

β2
i Ii(0).

– The FI is approximate as :

(5) Ii(0) =
∑
j

1

p
(i)
j

(
∂q

(i)
j

∂βi
|βi=0)2 ≈ ∆4(

∑R
u=1

∑S
v=1 a

2
uv)

2

(R× S)2ν2
i

.

The FI is relative to v2
i of residuals and coefficients of the filter.

2. Computing Costs
– The final FI values are obtained by Ii(0) = max{IHk

i (0)},Hk ∈ H.
– Under payload constraint αn =

∑n
i=1 h(βi), compute change proba-

bilities βi.
– Satisfying βi = exp(λξi)/(1 + 2exp(λξi)), the initial costs are solved

as :

(6) ξi =
1

λ
ln(

1

βi
− 2).

– Use an average low-pass filter to spread the initial costs to obtain the
final embedding costs as :

(7) ρ = ξ ⊗L

Experiments

1. Setup.
– Database : BOSSBase ver.1.01[1].
– Comparison schemes

– Designed heuristically : WOW[5], S-UNIWARD[6] and HILL[7]
– Model-based : MG[4] and MiPOD[8]

– Steganalysis
– Artificial features : SRM[3] and maxSRMd2[2]
– Deep neural network : Xu-Net[9]

– The ternary optimal embedding simulator was used for all methods.

2. Impact of parameters.

TABLE 1: PE of MGR with different high-pass filters under different payload α

against SRM. MGR∗ denotes the scheme using SH, SV, and KB filters together. (MG
is used for comparison.)
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Fig. 4. Typical high-pass filters used in this paper.

Table 3. PE of MG and that of MGR with different high-pass
filters under different payload α against SRM. MGR∗ denotes
the scheme using SH, SV, and KB filters together.

α 0.05 0.1 0.2 0.3 0.4 0.5

MG 0.3715 0.2935 0.2131 0.1654 0.1339 0.1119
MGR(SH) 0.4083 0.3467 0.2686 0.2142 0.1733 0.1400
MGR(KB) 0.4327 0.3668 0.2745 0.2066 0.1617 0.1253
MGR(KV) 0.4155 0.3511 0.2485 0.1884 0.1443 0.1129

MGR∗ 0.4516 0.3951 0.3081 0.2383 0.1882 0.1518

Table 4. PE of MGR∗ with h× h average filter under differ-
ent payloads α against SRM.

α 0.05 0.1 0.2 0.3 0.4 0.5

h = 3 0.4584 0.4108 0.332 0.2741 0.2193 0.1782
h = 5 0.4653 0.4296 0.358 0.2961 0.2473 0.2020
h = 7 0.4668 0.4289 0.3624 0.3015 0.2506 0.2103
h = 9 0.4644 0.4276 0.3587 0.2991 0.2488 0.2079
h = 11 0.4613 0.4258 0.3565 0.2974 0.2463 0.2065

4. EXPERIMENTS

4.1. Setup

All experiments were performed on BOSSBase ver.1.01
database [18] containing 10,000 gray-scale images with
512 × 512 pixels. Five existing content-adaptive stegano-
graphic schemes were used for comparison. Three of them
were heuristic distortion-based: WOW [8], S-UNIWARD [9]
(with the stable constant σ = 1), and HILL [10]; and t-
wo of them were model-based: MG [11] and MiPOD [14].
The ternary optimal embedding simulator was used for all
methods. The payload rate was measured by bit per pixel
(bpp).

We used two 34671-D steganalytic feature sets, including
SRM [19] and its selection-channel version maxSRMd2 [16],
to evaluate security performance. The Fisher linear discrimi-
nant based ensemble classifier [20] was used to perform clas-
sification. For each steganographic scheme, we randomly s-
plit the image set into 5000 cover/stego pairs for training and
the rest for testing. The performance was evaluated by the
testing error defined as

PE = min
PFA

1

2
(PFA + PMD) , (20)

where PFA and PMD were the false-alarm and the missed-
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Fig. 5. PE of the proposed method and existing stegano-
graphic schemes.

detection probabilities, respectively. We repeated the random
split of the training and testing sets 10 times and reported the
averaged value PE .

4.2. Impact of the parameters

The high-pass filter has an impact on the performance. We
used several filters individually, including second-order hor-
izontal derivative (SH) filter, KB filter, KV filter, etc, which
were used in [15]. The experimental results are shown in Ta-
ble 3, and the results of MG are also included for comparison.
We can observe that SH and KB are the two best performing
filters. As a result, we used three filters, including SH filter,
second-order vertical derivative (SV) filter, and KB filter to-
gether, which are shown in Fig. 4. The resulting scheme is
denoted MGR∗. It can be found that the scheme with various
filters can improve the performance.

The size of the h × h average filter L also has an im-
pact on the steganographic performance and it is determined
experimentally. Table 4 shows the performance of the pro-
posed MGR∗ against SRM under different filter size. It can
be observed that MGR∗ achieves the best performance when
h = 7. In the rest experiments, we use the 7× 7 average low-
pass filter as default. In the rest of the paper, we use MGR to
stand for MGR∗ incorporated L with h = 7.

TABLE 2: PE of MGR∗ with h × h average filter under different payloads α against
SRM.

SH KB

-4 +2

+2

+2

+2

-1

-1-1

-1

SV

-2

+1

+1

-2 +1+1

Fig. 4. Typical high-pass filters used in this paper.

Table 3. PE of MG and that of MGR with different high-pass
filters under different payload α against SRM. MGR∗ denotes
the scheme using SH, SV, and KB filters together.

α 0.05 0.1 0.2 0.3 0.4 0.5

MG 0.3715 0.2935 0.2131 0.1654 0.1339 0.1119
MGR(SH) 0.4083 0.3467 0.2686 0.2142 0.1733 0.1400
MGR(KB) 0.4327 0.3668 0.2745 0.2066 0.1617 0.1253
MGR(KV) 0.4155 0.3511 0.2485 0.1884 0.1443 0.1129

MGR∗ 0.4516 0.3951 0.3081 0.2383 0.1882 0.1518

Table 4. PE of MGR∗ with h× h average filter under differ-
ent payloads α against SRM.

α 0.05 0.1 0.2 0.3 0.4 0.5

h = 3 0.4584 0.4108 0.332 0.2741 0.2193 0.1782
h = 5 0.4653 0.4296 0.358 0.2961 0.2473 0.2020
h = 7 0.4668 0.4289 0.3624 0.3015 0.2506 0.2103
h = 9 0.4644 0.4276 0.3587 0.2991 0.2488 0.2079
h = 11 0.4613 0.4258 0.3565 0.2974 0.2463 0.2065

4. EXPERIMENTS

4.1. Setup

All experiments were performed on BOSSBase ver.1.01
database [18] containing 10,000 gray-scale images with
512 × 512 pixels. Five existing content-adaptive stegano-
graphic schemes were used for comparison. Three of them
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(with the stable constant σ = 1), and HILL [10]; and t-
wo of them were model-based: MG [11] and MiPOD [14].
The ternary optimal embedding simulator was used for all
methods. The payload rate was measured by bit per pixel
(bpp).

We used two 34671-D steganalytic feature sets, including
SRM [19] and its selection-channel version maxSRMd2 [16],
to evaluate security performance. The Fisher linear discrimi-
nant based ensemble classifier [20] was used to perform clas-
sification. For each steganographic scheme, we randomly s-
plit the image set into 5000 cover/stego pairs for training and
the rest for testing. The performance was evaluated by the
testing error defined as
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Fig. 5. PE of the proposed method and existing stegano-
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detection probabilities, respectively. We repeated the random
split of the training and testing sets 10 times and reported the
averaged value PE .

4.2. Impact of the parameters

The high-pass filter has an impact on the performance. We
used several filters individually, including second-order hor-
izontal derivative (SH) filter, KB filter, KV filter, etc, which
were used in [15]. The experimental results are shown in Ta-
ble 3, and the results of MG are also included for comparison.
We can observe that SH and KB are the two best performing
filters. As a result, we used three filters, including SH filter,
second-order vertical derivative (SV) filter, and KB filter to-
gether, which are shown in Fig. 4. The resulting scheme is
denoted MGR∗. It can be found that the scheme with various
filters can improve the performance.

The size of the h × h average filter L also has an im-
pact on the steganographic performance and it is determined
experimentally. Table 4 shows the performance of the pro-
posed MGR∗ against SRM under different filter size. It can
be observed that MGR∗ achieves the best performance when
h = 7. In the rest experiments, we use the 7× 7 average low-
pass filter as default. In the rest of the paper, we use MGR to
stand for MGR∗ incorporated L with h = 7.

3. Comparison to Existing Methods. (MGR is MGR* with h = 7.)
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TABLE 3: PE under different payloads α against Xu-Net.
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ABSTRACT

Content-adaptive image steganographic schemes hide data in
complex regions of image by properly defining embedding
costs. The costs can be defined in a heuristic way or with a s-
tatistical model. Inspired by MG (multivariate Gaussian mod-
el) and MiPOD (minimizing the power of optimal detector),
we propose a model-driven steganographic scheme. The im-
age residuals obtained by convoluting with high-pass filters,
are modeled by quantized multivariate Gaussian distribution.
Then, Fisher Information can be approximately derived and
we show that it is not only related to Gaussian variance but
also filter coefficients. By selecting the maximum value of FI
from various filters, the final FI and the cost for each embed-
ding location can be obtained. Experimental results show that
for resisting steganalysis of rich model and selection-channel-
aware rich model, the proposed method is competitive com-
pared with stat-of-the-art steganographic schemes. It is also
computational efficient when compared to the MiPOD, which
was the best performing model-driven method.

Index Terms— Steganography, steganalysis, multivariate
Gaussian model, spatial images

1. INTRODUCTION

Steganography is the technique that attempts to secretly con-
vey messages through digital media, and it receives chal-
lenges from the technique of steganalysis which aims to
reveal its presence [1–5]. Most of existing content-adaptive
image steganographic methods are based on a distortion-
minimization framework [6, 7], in which the distortion func-
tion can be designed to associate cost with data embedding
impact. In most schemes [8–10], data embedding changes are
distributed in complex or difficult modeling regions through
heuristically defining low embedding costs in the noisy parts
of image. On the other hand, some schemes try to define
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NSFC (Grant 61572329, 61872244, U1636202, 61772349) and in part by the
Shenzhen R&D Program (Grant JCYJ20160328144421330).

Table 1. PE of HILL and MGR under different payload α
against SRM.

α
PE(in %)

HILL MGR
0.05 46.91 46.68
0.1 43.64 42.89
0.2 36.11 36.24
0.3 29.96 30.15
0.4 24.82 25.06
0.5 20.55 21.03

Table 2. PE of MiPOD and MGR under different payload α
against SRM.

α
PE(in %)

MiPOD MGR
0.05 43.80 43.49
0.1 39.39 38.82
0.2 32.37 31.99
0.3 27.17 27.10
0.4 22.43 22.83
0.5 18.45 19.07

Table 3. PE under different payload α against Xu-Net.

α 0.05 0.1 0.2 0.3 0.4 0.5

HILL 0.4622 0.4072 0.3352 0.2751 0.2259 0.1963
MiPOD 0.4591 0.4117 0.3359 0.2730 0.2306 0.1945
MGR 0.4595 0.4251 0.3540 0.2908 0.2478 0.2073

4. Computation complexity

TABLE 4: The averaged elapsed time (in second) used in computing FI for MiPOD
and MGR.

Table 7. The averaged elapsed time (in second) for comput-
ing FI for MiPOD and MGR.

Scheme MiPOD MGR

Elapsed time (s) 0.4329 0.0542

4.2. Impact of the parameters

The high-pass filter has an impact on the performance. We
used several filters individually, including second-order hor-
izontal derivative (SH) filter, KB filter, KV filter, etc, which
were used in [15]. The experimental results are shown in Ta-
ble 5, and the results of MG are also included for comparison.
We can observe that SH and KB are the two best performing
filters. As a result, we used three filters, including SH filter,
second-order vertical derivative (SV) filter, and KB filter to-
gether, which are shown in Fig. 4. The resulting scheme is
denoted MGR∗. It can be found that the scheme with various
filters can improve the performance.

The size of the h × h average filter L also has an im-
pact on the steganographic performance and it is determined
experimentally. Table 6 shows the performance of the pro-
posed MGR∗ against SRM under different filter size. It can
be observed that MGR∗ achieves the best performance when
h = 7. In the rest experiments, we use the 7× 7 average low-
pass filter as default. In the rest of the paper, we use MGR to
stand for MGR∗ incorporated L with h = 7.

4.3. Comparison to Existing Methods

We compare MGR with WOW, S-UNIWARD, HILL, and Mi-
POD against SRM and maxSRMd2 under different payloads.
Fig. 5 shows the results. We can observe that MGR out-
performs MiPOD and acts comparable to HILL against SR-
M, and outperforms HILL and acts comparable to MiPOD
against maxSRMd2.

Comparing MGR with MiPOD, the main difference is the
way to obtain FI. We randomly selected 1000 images to e-
valuate elapsed time of computing FI for both MiPOD and
MGN under payload 0.4 bpp. The experiments were per-
formed with a computer with Intel(R) Xeon(R) CPU E5-2630
v2 @ 2.60GHz and 32G memory. Averaged results are shown
in Table 7. It is worthy to note that the elapsed time of com-
puting FI of MGR is significantly less than of MiPOD.

5. CONCLUSION

In this paper, we have proposed a stegonographic method
based on the multivariate Gaussian model built for image fil-
tered residuals. It can be considered as an extension of MG
[11] by explicitly considering the effect of high-pass filtering
commonly used in steganalysis. The FI can be approximate-
ly derived and it is shown that the FI is not only related to

the the Gaussian variance but also the high-pass filter coeffi-
cients. In order to further improve the performance, various
filters can be employed in the proposed scheme by consid-
ering the maximum FI values. The proposed model-based
MGR scheme has low computational complexity when com-
pared to MiPOD, and achieves the best overall performance
when compared with HILL and MiPOD.

We note that fusing the FI values from different high-pass
filters is still performed in a heuristic manner. More insight-
ful investigation such as making regulation on the filter coef-
ficients should be done in the future work.

Conclusion

– Different from MG which models image elements, MGR explicitly con-
siders the KL divergence in terms of image residuals, which are com-
monly used in steganalysis.

– The mathematically derived FI is related to both Gaussian variance and
high-pass filter coefficients.

– Various filters can be employed in MGR by considering the maximum
FI values.

– The proposed method achieves the best overall performance when com-
pared with HILL and MiPOD.

Future Research

Take more insightful investigation such as making regulation on the filter
coefficients to improve performance.
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