Objectives

This model-driven steganographic scheme 1s inspired by MG (multivari-
ate Gaussian model)[4] and MiPOD (minimizing the power of optimal
detector)[8]. This scheme is based on multivariate Gaussian model of im-
age residuals, instead of pixels in MG. This scheme 1s abbreviated as
MGR. And, this scheme estimates variances by using a simple method
instead a complex one in MiPOD.

—Image residuals are obtained by filtering an 1mage with high-pass fil-

ters.

— Steganalysis benefits from extracting effective features from image
residuals. Modeling image residuals, we aim to better preserve the sta-
tistical model of an 1mage.

— Model image residuals as zero-mean quantized multivariate Gaussian
distributions. The distribution of stego 1image residuals can be approx-
imately derived from the embedding change probabilities associated
with pixels.

— Fisher information (FI) can be efficiently obtained by using the esti-
mated local variance of residuals and the corresponding high-pass filter
coetficients. We select the optimal FI from a set of Fls.

— The proposed scheme performs well and has low computation com-

plexity.
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FIGURE 1: The processing pipeline of the proposed MGR scheme.

1. Residual model
—Let Y = X + N, where X, Y and N are the cover image, the stego
image and the embedding changes, respectively. Image residuals are

obtained as :
(1) ny =YRH=(X+N)H=nx+N ® H.

— The 2-D high-pass filter 1s formed as :

aip -+ ais
(2) H=|... ...
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—Model residuals as zero-mean quantized multivariate Gaussian dis-
tributions 1y, ~ QA(N(0,7;)). Let the symbols pli) = {pgz)} and

gl = {q](-i)} (7 € M) to denote the probability mass function (PMF)
of nx and that of 7y, respectively.
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— For a large n and small embedding change probabilities [3;, the total

KL divergence between the cover and the stego can be approximated

by :
(4) ;DKL(]?( g®) = 5;5@21@(0)-
— The FI 1s approximate as :
(2)
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The FI1 is relative to v,? of residuals and coefficients of the filter.

2. Computing Costs
— The final FI values are obtained by ;(0) = max{[f{’“(())}, H, < H.

— Under payload constraint an = » ' ; h(;), compute change proba-
bilities j3;.
—Satisfying 5; = exp(AE;)/(1 4 2exp(AE;)), the initial costs are solved
as :
1 1
6 = —In(— — 2).

— Use an average low-pass filter to spread the 1nitial costs to obtain the

final embedding costs as :

(7) p=ERL

Experiments

1. Setup.
— Database : BOSSBase ver.1.01[1].

— Comparison schemes
— Designed heuristically : WOW][5], S-UNIWARDI6] and HILL[7]
— Model-based : MG[4] and MiPOD[8]
— Steganalysis
— Artificial features : SRM[3] and maxSRMd2[2]
— Deep neural network : Xu-Net[9]

— The ternary optimal embedding simulator was used for all methods.

2. Impact of parameters.

TABLE 1: Py of MGR with different high-pass filters under different payload «
against SRM. MGR™ denotes the scheme using SH, SV, and KB filters together. (MG

1s used for comparison.)

o 0.05 0.1 0.2 0.3 0.4 0.5

MG 0.3715 0.2935 0.2131 0.1654 0.1339 0.1119
MGR(SH) 0.4083 0.3467 0.2686 0.2142 0.1733 0.1400
MGR(KB) 0.4327 0.3668 0.2745 0.2066 0.1617 0.1253
MGR(KV) 0.4155 0.3511 0.2485 0.1884 0.1443 0.1129

MGR*  0.4516 0.3951 0.3081 0.2383 0.1882 0.1518

TABLE 2: Py of MGR* with h x h average filter under different payloads o against
SRM.

o 0.05 0.1 0.2 0.3 0.4 0.5

h=3 0.4584 0.4108 0.332 0.2741 0.2193 0.1782
h=5 0.4653 0.4296 0.358 0.2961 0.2473 0.2020
h=7 04668 0.4289 0.3624 0.3015 0.2506 0.2103
h=9
h

0.4644 0.4276 0.3587 0.2991 0.2488 0.2079
=11 0.4613 0.4258 0.3565 0.2974 0.2463 0.2065

3. Comparison to Existing Methods. (MGR is MGR* with h = 7.)
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FIGURE 3: Against maxSRMd2.

TABLE 3: P under different payloads o against Xu-Net.

o 0.05 0.1 0.2 0.3 0.4 0.5

HILL 0.4622 0.4072 0.3352 0.2751 0.2259 0.1963
MiPOD 0.4591 0.4117 0.3359 0.2730 0.2306 0.1945
MGR 0.4595 0.4251 0.3540 0.2908 0.2478 0.2073

4. Computation complexity

TABLE 4: The averaged elapsed time (in second) used in computing FI for MiPOD
and MGR.

MiPOD  MGR
0.4329  0.0542

Scheme

Elapsed time (s)

Conclusion

— Different from MG which models image elements, MGR explicitly con-
siders the KL divergence in terms of image residuals, which are com-
monly used in steganalysis.

— The mathematically derived FI 1s related to both Gaussian variance and

high-pass filter coefficients.
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— Various filters can be employed in MGR by considering the maximum
FI values.

— The proposed method achieves the best overall performance when com-
pared with HILL and MiPOD.

Future Research

Take more insightful investigation such as making regulation on the filter

coefficients to improve performance.
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