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Agenda

 Solve inverse problems with priors

* Incorporate generative models into alternating direction method of
multipliers (ADMM) framework to inverse problem solving

 Exploit the structure in INfoGAN’s latent variable space

« Demonstrate the improvement of the proposed algorithm on MNIST
and Celeb-A datasets



Solving Inverse Problems with Learned Prior
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Applying ADMM to Inverse Problems
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Generative Model with Structured Latent Variable Space
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Xi Chen, Yan Duan, Rein Houthooft, John Schulman, llya Sutskever, and Pieter Abbeel, “Infogan: Interpretable representation learning by
information maximizing generative adversarial nets,” in Advances in neural information processing systems, 2016, pp. 2172—-2180.
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InfoGAN MNIST Examples

INfoGAN Generated Images
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* € contains one categorical variable

and two continuous variables

« Each row corresponds to one

categorical code

« Each column corresponds to one

2D continuous code



Fast CS recovery using generative models

Train a generative model G ., (-) on the dataset

Method I:
Generate random latent variable zs following its distribution.
Generate random noise € according to some distribution.
Construct noisy signals &s such that & = Gy, (2) + €
Train a projector network G, (+) that maps @ to z

Method I1:
Draw samples x from the training set
Generate random noise € according to some distribution.
Construct noisy signals s such that x = x + €
Train a projector network G, (+) such that G ger, (G proj(-)) maps & to . (Gyep, is fixed)

For signal recovery:
Given compression matrix ®, compressed measurements y
while Stopping criteria not met do
—1
pk+1) — ((I)Tin + pI> (‘I’Ty + p(Ggen(z®)) — u(’“)))
Il il i :
pF+D = (k) gkt )_Ggen(z( )
end while




Original
Compression F-CSRG F-CSRG
DAE Ratio DAE with DCGAN | with InfoGAN
TV 4x 2.20/982% | 2.25/983% | 2.68/97.7%
8x 2.54/97.8% | 2.72/973% | 3.06/97.2%
GD-DCGAN 16x 3.23/94.8% | 3.70/91.7% | 3.79/93.8%
Proposed (DCGAN) 32x 5.13/73.5% | 5.86/66.4% | 5.37/77.4%
64x 7.33/41.8% | 791/362% | 7.43/48.0%

Proposed (InfoGAN)

Original
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Theoretical Background

Theorem 1.1. Let G : R¥ — R” be a generative model from a d-layer neural network using ReLU activations. Let
A € R™*" be a random Gaussian matrix for m = O(kdlogn), scaled so A; ; ~ N(0,1/m). For any z* € R"
and any observation y = Az™ + 7, let 2 minimize ||y — AG(z)||2 to within additive € of the optimum. Then with
1 — e=2(™) probability,

IG(2) = 27[l2 < 6 min [|G(z") —2%[|2 + 3|lnll2 + 2e.

« Solving in the compressed domain (LHS) has comparable
performance as solving in the uncompressed domain (RHS).

* Number of measurements required is linear to the dimension of
the latent variable space (k).

Ashish Bora, Ajil Jalal, Eric Price, andAlexandros G Dimakis, “Compressed sensing using generative models,” in International
Conference on Machine Learning, 2017, pp. 537-546.
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Theoretical Background

N
InNfoGAN
5 ' Generator ' X

(¢, r)

C: controllable variable of size k. ; controls major variations in
the generated images

I': random Gaussian of size k. ; adds fine details in the
generated images
Ke << Ks+ K, = K

Lose details when the number of compressed measurements is
extremely limited.
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Conclusion

 Strong prior knowledge captured by the generative models allows
higher reduction in the number of required compressed
measurements.

» Apply ADMM framework to inverse problem solving leads to more
freedom in algorithm design.

 Train a projector network that maps signals to the latent variable
space to accelerate the recovery.

 Structures in the latent variable space play an important role in
increasing the robustness of the recovery algorithm.
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