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• Solve inverse problems with priors

• Incorporate generative models into alternating direction method of 
multipliers (ADMM) framework to inverse problem solving

• Exploit the structure in InfoGAN’s latent variable space

• Demonstrate the improvement of the proposed algorithm on MNIST 
and Celeb-A datasets

3

Agenda



Solving Inverse Problems with Learned Prior

y Φ x

x is sparse

x is locally smooth

Capturing the property 
of x by J(x)

x can be generated by a 
latent variable z and a 
mapping function Ggen(·) 
and the property of z 
can be captured by H(z)
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Applying ADMM to Inverse Problems

Denoising step:

x(k+1) + u(k)

Denoiser

s(k+1)

J(s) is implicitly formed during 
the training of the denoiser

Explicitly 
trained 
previously

H(z) is formed by designed 
the latent variable space of 
the generative model

Projection step:
(project to the latent 
variable space)

x(k+1) + u(k)

z(k+1)
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can share 
structures

Generative Model with Structured Latent Variable Space

z

(  r ,  c )
c: controllable variable
r:  random Gaussian Classifier/ 

Regressor
Network C(·)

Fool D(·) Separate x and x^

Recover c from x̂

InfoGAN:

Generator
Network Ggen(·)

x̂ Discriminator
Network D(·)

x from 
true dataset 
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Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel, “Infogan: Interpretable representation learning by 
information maximizing generative adversarial nets,” in Advances in neural information processing systems, 2016, pp. 2172–2180. 



InfoGAN MNIST Examples

• c contains one categorical variable 
and two continuous variables

• Each row corresponds to one 
categorical code

• Each column corresponds to one 
2D continuous code

InfoGAN Generated Images
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Fast CS recovery using generative models 
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Testing on MNIST Digits and Celeb-A Database 
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Theoretical Background
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Ashish Bora, Ajil Jalal, Eric Price, andAlexandros G Dimakis, “Compressed sensing using generative models,” in International 
Conference on Machine Learning, 2017, pp. 537–546. 

• Solving in the compressed domain (LHS) has comparable 
performance as solving in the uncompressed domain (RHS).

• Number of measurements required is linear to the dimension of 
the latent variable space (k).



z
( c ,  r )

c: controllable variable of size kc ; controls major variations in 
the generated images
r:  random Gaussian of size kr ; adds fine details in the 
generated images 

kc <<  kc + kr =  k

InfoGAN
Generator x̂

Theoretical Background

Lose details when the number of compressed measurements is 
extremely limited.
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Conclusion

• Strong prior knowledge captured by the generative models allows 
higher reduction in the number of required compressed 
measurements.

• Apply ADMM framework to inverse problem solving leads to more 
freedom in algorithm design.

• Train a projector network that maps signals to the latent variable 
space to accelerate the recovery.

• Structures in the latent variable space play an important role in 
increasing the robustness of the recovery algorithm.
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