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* |In the era of big data, the processing will demand
huge computational load if an effective strategy is
not followed

* Data-selective processing
— Process only the innovative new data
— May avoid outliers

— Performance close to the one of the non-data-
selective counterparts

— Reduced computational burden since only a very small
portion of the data is processed
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* This paper develops data-selective versions of

— LMS-Newton (LMSN)
— LMS-Quasi-Newton (LMSQN)

 LMSN/LMSQN are powerful alternatives to the
classical LMS

— Higher Complexity

— Better Performance in several cases (e.g. when the
spread of the eigenvalues of the input-signal correlation
matrix is large)

— Some versions of LMSQN appear to be very robust to
guantization errors compared to algorithms of similar
‘complexity/performance, i.e., RLS.
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 The data are classified via two thresholds as
— Non-innovative
— Innovative
— QOutliers

 The thresholds are tuned based on a prescribed
probability of update

* The latter probability is connected to the Mean
Square Error (MSE) of the algorithms

* The performance is evaluated via simulations on
synthetic and real world data
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* Linear System Identification Problem
* |Input-Output
d(k) = w, x(k) + n(k)
e w, € R""is the unknown system
e x(k)=[x(k)x(k—1) ... z(k—L+1)]" is the
input signal
 n(k) is a Gaussian noise sample of variance o}

* Afiltering algorithm generates an output

) sifnal estimation via w' (k)x(k)
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* Error Estimation Sequence for £ =0,1,...,x
e(k) = d(k) —w" (k)x(k)
* Mean Square Error
E(k) =on + E{Aw (k)x(k)x" (k)Aw(k)}
=07, + Eewe (),

e Aw(k) = w(k) — w,

* The MSE formula is used to prescribe the
desired probability of update
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e The aim is to minimize the cost function
1
J(w(k)) = 5!6(k)\2

* Update Step
w(k) = w(k —1) + P R (k)x(k)&(k)

x! (k)R (k)x(k)
* /4 IS a step-Size parameter
e 6(k) =d(k) —w' (k—1)x(k)is the a priori
estimation error
« R(k) is the estimation of R = E{x(k)x" (k)}
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« LMSN and LMSQN differ on how R~ (k) is
estimated

e LMSN estimation is based on a Robbins-
Monro procedure

R‘l(k):lia<f{_1(k—1)
Rk 1)x <>T<k>R—1<k—1>}
= x (k) TR (k)x (k)

* « Is astep-size parameter
it
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* For the LMSQN the estimation is given by

o —1 1 5 —1 H
ROk =13 {R (k=1+ <2x(k)Tf{1(k)x(k) - 1)

R (k- Dx(k)xT(k)R™(k —1) }
x(k)TR-1 (k)x (k) '

X
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* New data are classified as innovative if |e(k)]
. . 2
is greater than a scaled noise power level 7(k)o,

e If le(k)|*is greater than Tmaz0;, an outlier is
identified and no update is performed

* Equivalent cost function

gle(®)P, if /7(R) < L < s

0, otherwise.
\
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* Update for the data-selective approach
w(k) =
1 X e e
{vv(k ~ D+ ey VTR < S < Ve

w(k — 1), otherwise.

 The data-selective strategy may be adopted
for the update of R~} as well.

* Desired probability of update
Pup(k) = p{|€(i)’ > \/@} - P{ el W}

O On
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* Under the assumption of white Gaussian input
signals, at the steady state we have

-0 (55) 0 (45)

Oe

* Q(-) is the complementary Gaussian
cumulative distribution function

* o is the error signal variance

* Index kis dropped under the assumption of
statlonarlty
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* Proposition: The excess mean square error at
the steady-state can be approximated by

. ,UfPup 2
é_exc(oo) T 2 _ ,LLP'u,p

If no outliers are presented the threshold is

Py,
= V1+BQ7(0.5P,,), B = 5= 4=

For the case of outliers, some prior information
of the signal sources and supporting circuitry,
is needed for deriving the thresholds

M.O.K. Mendonc,a, J. O. Ferreira, C. G. Tsinos, P.S.R. Diniz, and T. N. Ferreira, “On fast
“l“ |“ 1 converging data-selective adaptive filtering,” Algorithms, vol. 12, no. 1, pp. 4, 2019. 14
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Data-Selective Approaches (5/5)

Algorithm 1 Data-selective LMSN and LMSQN Algorithms

I: Inputs: 0 < p < 1,0 < a < 1 (for LMSN), v small positive value,
Pup and Tmax

2: Initialize w(0) = 07,41 and R=1(0) = I,

. _ Py
3: Set B = 2_#135.1)
4: Calculate 7 from (13), if outliers are present or from (16), otherwise
S:fork=1,2,... do
6:  Acquire x(k) and d(k)
7:  e(k) =d(k) — wT (k)x(k)
8: if\/Ton < le(k)| < /Tmazon then
9: t(k) « R~ (k)x(k)
10: P(k) + xT(k)t(k)

t(k)e(k

11: wk+1)+ w(k)+p (w)(k() )

: 51 1 |Rp-1 t(k)tT (k)

"
R (k+1)« R (k) + %t(k)tT(k), for LMSQN
13:  elseif |e(k)| < /7o, then
14: w(k+1) < w(k)
15:  elseif |e(k)| > \/Tmazon then
16: w(k +1) « w(k), e(k) = 0, d(k) =0
17:  endif

||||i ||| 18: end for
UNIVERS;E DU 1 5
LUXEMBOURG
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e System identification problem

[0.1010 0.3030 0 — 0.2020 — 0.4040
— 0.7071 — 0.4040 — 0.2020].

* |[nput signals

x(k) =0.88x(k — 1) + n1(k),
xr(k) =—0.55z(k — 1) — 1.221x(k — 2) — 0.49955x(k — 3)
— 0.4536x(k — 1) + na(k),
* n1(k) and n2(k) are uncorrelated Gaussian

noise variables




ST

securityandtrust.lu

Simulations (2/5)
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by the data-selective LMSN and LMSQN algorithms.
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 Temperature prediction on a data-set provided by University
of California at Irvine

* The prediction error variance 02 is derived according to the
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. UC Irvine, “Air quality data set, machine learning repository, [online],”
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https://archive.ics.uci.edu/ml/datasets/Air+quality

ST

securityandtrust.lu

Conclusion

e Data Selective LMSN and LMSQN algorithms
were developed

 Computational overhead reduction
* Qutlier Exclusion from the learning process

e Performance evaluated via simulations on
synthetic and real world data

* Extensions on distributed adaptive filtering
under development
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Thank you for your attention




