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Introduction & Contribution Unlimited Sampling Meets One-Bit Quantization Sufficiency Condition and Error Bound
Key Takeaways » In order to discretize the range, y[n] is quantized via the first order, one-bit One-Bit Unlimited Sampling Theorem
» Unlike Shannon's Sampling Theorem, the analog-to-digital converters Sigma-Delta Quantizer: Given
(ADCs) are limited in dynamic range, thus prone to saturation and clipping. uln] = u[n — 1] + y[n] — q[n], q[n] = sign (u[n — 1] + y[n]) » g € B, and not superoscillating, 5, > ||g|| 1,
In orde.r tc.) circumvent.thes.e problems, the authors introduced the concept > g[n] - the one-bit modulo samples of g(t),
of Unlimited Sampling in [1]. » System architecture for One-Bit Unlimited Sampling: . . . _ _
» 1,'[n] - the samples of the smoothing kernel ¢),’(t) with sampling rate
» Behind wor-k [1] are recent developments in ADC design - the Self-Reset One-8it Unlimted Sampling Archtecturs by =2 [[|02M] 1],
ADCs, which compute modulo samples [2]. 4 " One Sit Modo o ernel ()
amples » a valid reconstruction kerne WO\ T),
» The Unlimited Sampling Theorem proves that a bandlimited signal can g(f)EB” i Iy ol e e . " . .
_ _ t a sufficient condition for approximate recovery of g(t) from g[n] (up to ad-
be perfectly recovered from modulo samples. The sampling rate is Y 6(t—n/ 1) . . .
. iz _ ditive multiples of 2) is
independent of the ADC threshold. Reconsinuclion| - "
o | | | 7> dref ([10°0y o] 1p |l +1) -
» As a step towards practical implementation, we consider not only sampling, " . . .
Conventional One-Bit Sampling vs One-Bit Unlimited Sampling Under these conditions, Recovery Algorithm yields the reconstruction error

but also quantization. {
~ N
Conventional One-Bit Samples ‘g(t) - g(t)| < ; (H@S&HLI —|_ M(@? wh )) )

» We combine the advantages of Unlimited Sampling and One-Bit @ o 2
Sigma-Delta Quantization (SDQ) to obtain an ADC scheme that has di [\ — Conventionarsoa 50 where M(i, 1)) is a constant dependent on the choice of kernels ¢ and 1}
low complexity due to coarseness of quantization and at the same time . £ o
overcomes the dynamic range limitations of conventional One-Bit SDQ. 2 et e P > Our algorithm allows for recovery with accuracy O(1/7), which is close to
: @) One-Bit Modulo Samples the best known error bound O(773/?) for conventional first order SDQ [3].
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Unlimited Sampling of Bandlimited Functions g0
\/ jlL L L L UEE | Reconstruction Example
» Let 7 > 1 be the (over)sampling rate and g(t) be a 7m-bandlimited function. S O S
(@)
» In Unlimited Sam:)ling framework. we sample g using non-linear principle: (a) C.onventlonal one—b!t sampllng.leads to recon_st_ructlon fz.nlur.e while our n.1ethod allows for fair recon- oL
struction. (b) Conventional one-bit samples exhibit saturation if the dynamic range exceeds [-1,1]. (c) ) ——  1-Bit Modulo Samples
. B rue Signal
y:n] _ mod>\ (g (Q)) . ne 27 r>1 Due to ampli_tude folding, one-bit modulo samples capture sufficiently more information about the signal 3.l L o
than conventional one-bit samples. e
S 2r
g

» Such folded samples are acquired using a version of the Self-Reset ADC [2].
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| | Recovery from One-Bit Modulo Samples
> Even If g(t) >> )\’ y[n] E [07 )\) |n thls Work’ We Set )\ — 1 - 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Modular Decomposition |1} o samples
Unlimited Sampling in Action . . "
Function g € B, admits a decomposition g[n] = y|[n] + €,[n], e¢[n] € 2)\Z. o -
i True Signal Residuals
(a) In (b) ° = == Recovered Residuals
g(t) » With SDQ involved, we decompose not g, but its multi-bit representation: E
0 g S gums|n] = q[n] + €,|n]. Recovering qug[n] boils down to finding £,[n]. E
| | | ~ o g0 —
5 ()2 » Consider smoothing kernel ¢"(t) := BY (£t) /max (B" (¢)), where BY is a 2f
_A - E N _A . . . N . . | | | | | | | | | |
fOUt‘J fOut Q’ B_Spllne Of Order N’ and Its Sampled VerSIOn wh [n] Wlth Sampllng rate -4 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Usual ADC Self-reset ADC mod, (g (1)) h € 2N Samples
(Up to a constant offset) ' _ : : : : :
(a) Randomly generated m-bandlimited signal g, its one-bit modulo samples g[n] acquired with 7 = 250 and
Recovery A|g0rithm the reconstructed signal & which is obtained using second order 1)°. The mean error |g — Z| is 2.1 x 1073,
(a) Usual ADC compared with self-reset ADC. In usual ADC, whenever the input signal f, voltage exceeds (b) The true residual £4[n] and its approximate recovery &,[n|.
some A\, the output signal fo,: saturates and this resuts in clipping. In contrast, the self-reset ADC folds Input: q[n], wly[n] and ﬁg > HgHLoo.
fin such that fo, is always in the range [—\, A|. (b) For m-bandlimited function g we plot the continuous Output: g(t) ~ g(t).
version of self-reset ADC, mod) (g (t)), together with uniform samples y|[n]. 1: Compute (Aq %’,V)[n] References
o _ 2: Compute mod; ((Ag = ¢))[n]) — (Ag * v})[n] and retain one
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