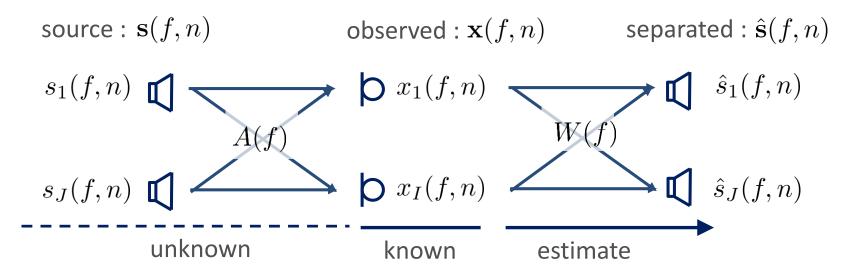
ICASSP 2019 @ Brighton, UK

AASP-L4.2

Joint Separation and Dereverberation of Reverberant Mixture with Multichannel Variational Autoencoder


Shota Inoue¹, Hirokazu Kameoka², Li Li¹,

Shogo Seki³, Shoji Makino¹

¹ University of Tsukuba, Japan
 ² NTT Communication Science Laboratories, NTT Corporation, Japan
 ³ Nagoya University, Japan

Research background

- Multichannel Source Separation
 - Underdetermined / Determined situation
 - To estimate demixing process W(f)
 - Time domain / Frequency domain
 - Without any information / With prior information
 - about time-frequency structure of source signal
- f : frequency index n : frame index

Problem formulation based on Local Gaussian Model

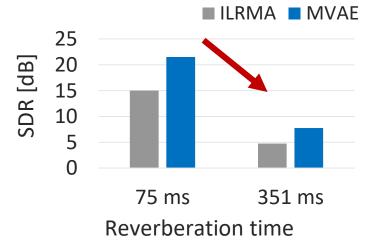
- Frequency-domain instantaneous mixture model : $\hat{s}(f, n) = W(f)x(f, n)$
- Local Gaussian Model (LGM): $s_j(f,n) \sim \mathcal{N}_{\mathbb{C}}(s_j(f,n)|0, v_j(f,n))$ $\mathbb{E}[|s_j(f,n)|^2]$
- Negative log-likelihood :

$$-\log \mathcal{L} \stackrel{e}{=} \sum_{f,n,j} \left(\log v_j(f,n) + \frac{|\boldsymbol{w}_j^{\mathsf{H}}(f)\mathbf{x}(f,n)|^2}{v_j(f,n)} \right) - 2N \sum_f \log |\det \mathbf{W}^{\mathsf{H}}(f)|$$
Depends on source Depends on spectrogram model Depends on demixing matrix
Permutation problem : Permutation of separated components in each *f* cannot be uniquely determined.
We can solve permutation alignment and source separation problem jointly.
$$\implies \text{minimize } -\log \mathcal{L}\left(v_j(f,n),\mathbf{W}(f)\right), \text{ s.t. } g(v_j(f,n))$$

2019/5/14

Conventional methods

- Independent Low-Rank Matrix Analysis (ILRMA) [Kameoka+ 2010, Kitamura+ 2016]
 - Constraint of $v_j(f, n)$:


Non-negative Matrix Factorization (NMF) $v_j(f,n) = \sum_{1}^{K} t(f,k) u(k,n)$

Stronger representation power of source spectrogram modeling

- Multichannel Variational Autoencoder (MVAE) [Kameoka+ 2018]
 - Constraint of $v_j(f,n)$:

Conditional VAE (CVAE) source model

Separation performances of both methods tend to degrade under highly reverberant conditions.

K: # of basis

Formulation based on frequency-domain convolutive mixture model

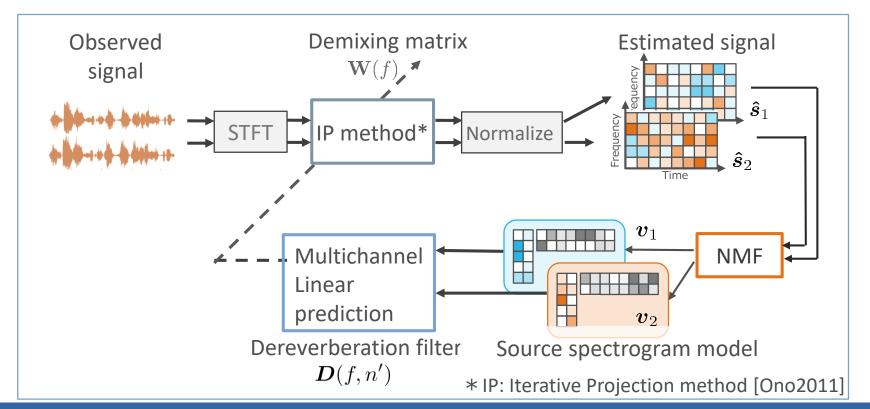
• Frequency-domain convolutive mixture model [Yoshioka+ 2010] :

$$\hat{\mathbf{s}}(f,n) = \sum_{n'=0}^{N'} \boldsymbol{W}^{\mathsf{H}}(f,n') \mathbf{x}(f,n-n') \qquad \text{Dereverberation filter} \\ = \left(\boldsymbol{W}^{\mathsf{H}}(f) \right) \left(\mathbf{x}(f,n) - \sum_{n'=1}^{N'} \boldsymbol{D}^{\mathsf{H}}(f,n') \mathbf{x}(f,n-n') \right) = \mathbf{y}(f,n)$$

②Instantaneous demixing process ①Dereverberation process

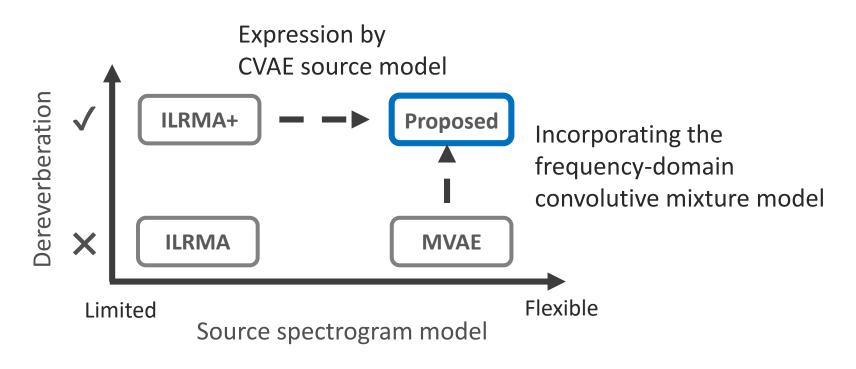
- Local Gaussian Model (LGM) : $s_j(f,n) \sim \mathcal{N}_{\mathbb{C}}(s_j(f,n)|0,v_j(f,n))$
- Negative log-likelihood : $-\log \mathcal{L} \stackrel{c}{=} \sum_{f,n,j} \left(\log v_j(f,n) + \frac{|\boldsymbol{w}_j^{\mathsf{H}}(f)[\mathbf{y}(f,n)|^2]}{v_j(f,n)} \right) - 2N \sum_f \log |\det \mathbf{W}^{\mathsf{H}}(f)|$

We can solve source separation and dereverberation problem jointly. minimize $-\log \mathcal{L}(v_j(f,n), \mathbf{W}(f), \underline{\mathbf{D}}(f,n'))$, s.t. $g(v_j(f,n))$

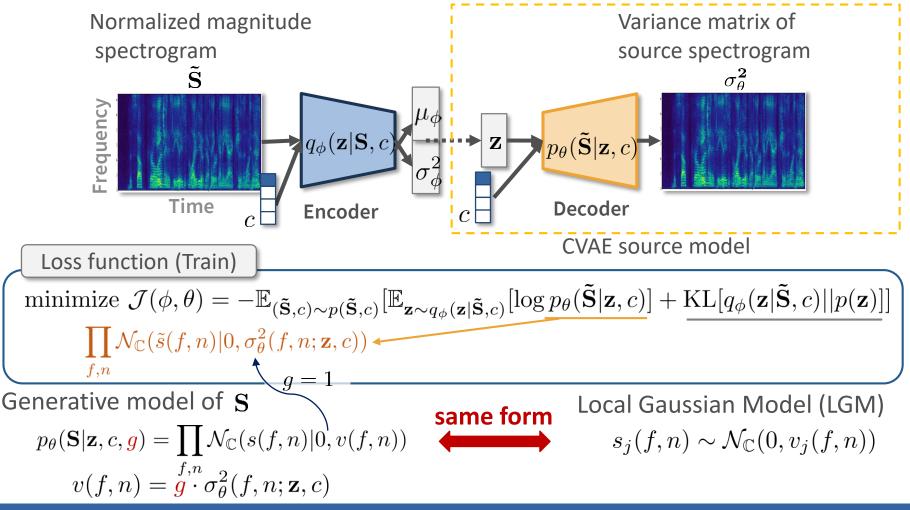

Extension of ILRMA (ILRMA+) [Kagami+ 2018]

Representation of mixture model:

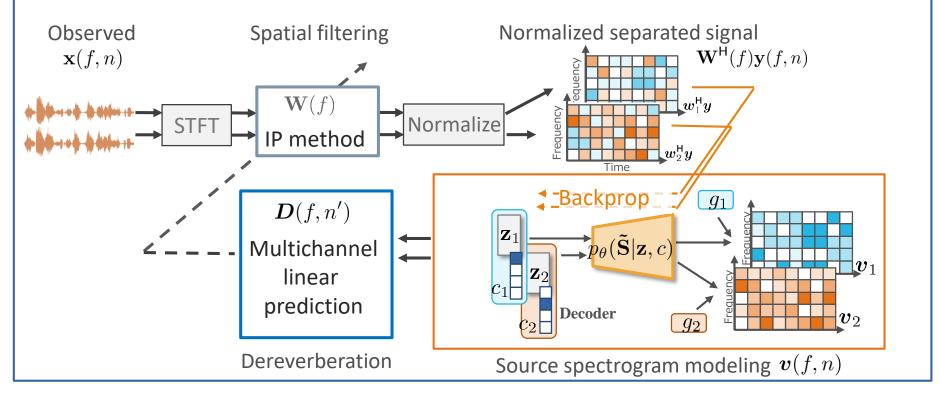
frequency-domain convolutive mixture model


Representation of source spectrogram model :

Non-negative Matrix Factorization (NMF) **can be improved**


Objective of this work

- 1. To incorporate the frequency-domain convolutive mixture model into MVAE to improve source separation performances under highly reverberant condition.
- 2. To derive a convergence-guaranteed algorithm for estimating the parameters.



CVAE source model [Kameoka+ 2018]

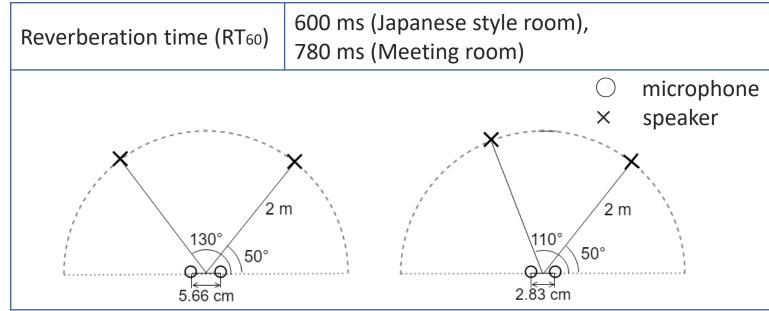
 The universal generative model capable of representing complex spectrograms of all the sources involved in training examples.

Proposed method: MVAE+

Step 1.Update $\mathbf{W}(f)$ using IP methodStep 2.(a) Update \mathbf{z}_j , c_j using backprop(b) Update $g_j \quad g_j \leftarrow \frac{1}{FN} \sum_{f,n} \frac{|\boldsymbol{w}_j(f)^{\mathsf{H}} \mathbf{x}(f,n)|^2}{\sigma_{\theta}^2(f,n;\boldsymbol{z}_j,c_j)}$ Step 3.Update $\boldsymbol{D}(f,n')$ using linear prediction

Negative log-likelihood :

$$-\log \mathcal{L} \stackrel{c}{=} \sum_{f,n,j} \left(\log v_j(f,n) + \frac{|\boldsymbol{w}_j^{\mathsf{H}}(f|\mathbf{y}(f,n)|^2)}{v_j(f,n)} - 2N \sum_f \log |\det \mathbf{W}^{\mathsf{H}}(f)| \right)$$


Experimental Evaluations

Experimental conditions (1 / 2)

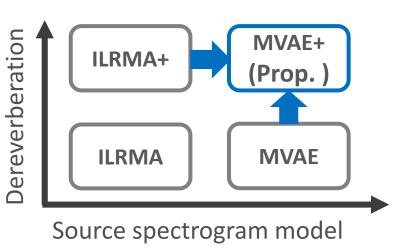
• Utterance data : Voice Conversion Challenge 2018 (VCC2018)

Speakers	2 female and 2 male speaker
Training data	Total 5 min (each speaker)
Test data	Total 2 min (each speaker)

Room impulse response : RWCP database

Experimental conditions (2 / 2)

• Experimental settings


	ILRMA	MVAE	ILRMA+	Proposed
Sampling Frequency	16 kHz			
Window length / shift	256 ms / 64 ms (4096 / 1024 sample points)			
Iteration	100	60	100	60
Iteration (CVAE)	-	100	-	100
Dereverberation filter length	- 3		3 (Japanese style room), 4 (Meeting room)	
Update interval	- 2		2	

 Evaluation: signal-to-distortion ratio improvement (SDR), signal-to-interference ratio improvement (SIR), signal-to-artifact ratio improvement (SAR)

Experimental results (1 / 2)

RT 60	Improvement [dB]			RT 60	Imp	Improvement [dB]		
600 [ms]	SDR	SIR	SAR	780 [ms]	SDR	SIR	SAR	
ILRMA	2.57	7.60	-0.94	ILRMA	2.43	7.48	-1.04	
MVAE	3.68	10.67	-0.42	MVAE	3.53	10.43	-0.50	
ILRMA+	5.06	11.20	1.15	ILRMA+	5.43	11.48	1.63	
MVAE+(Prop.)	6.66	14.74	2.22	MVAE+(Prop.)	6.89	14.90	2.64	

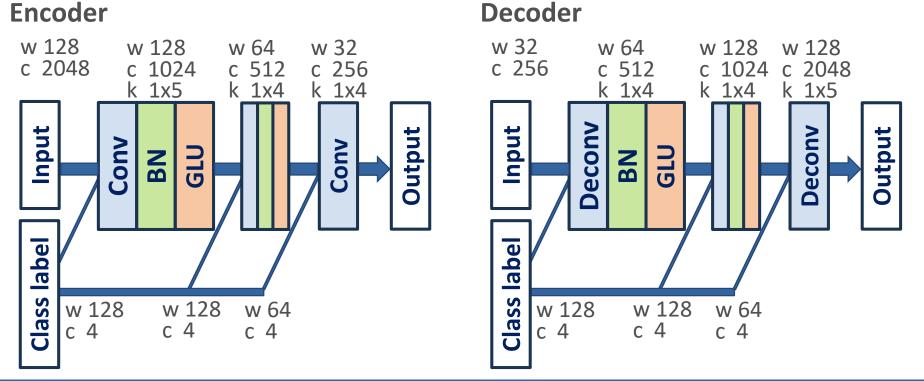
- Proposed approach outperformed conventional methods.
- It confirmed the effects of incorporating
 (1) dereverberation filter
 - (2) CVAE source model

Demo

Reverberation Time (RT60)	780 ms (RIR : Recoded in the meeting room)		
Dereverberation filter length	4		

Methods	SDR [dB]	Speaker		
		Male	Female	
Unprocess	-4.61			
ILRMA	-1.45			
MVAE	-0.65		Contraction of the second seco	
ILRMA+	1.65			
Proposed	3.03			

Conclusions


- Proposed : Extension of Multichannel Variational Autoencoder (MVAE+)
 - Using CVAE source model for source spectrogram modeling
 - Incorporating frequency-domain convolutive mixture model into MVAE
- Experimental evaluations (speech separation task)
 - Performance improvement from conventional methods :
 - SDR +1.4 dB / SIR +3.4 dB / SAR +1.0 dB

Thank you for your attention!

AASP-P7.8 : Fast Algorithm for MVAE

Experimental conditions (3 / 3)

- Architectures of CVAE network
 - Fully convolutional network
 - Gated convolutional network [Dauphin+ 2016]
 - 1-dimensional convolution / deconvolution

2019/5/14