
Aggregation Graph Neural Networks

Fernando Gama, Antonio G. Marques,
Geert Leus & Alejandro Ribeiro

Dept. of Electrical and Systems Engineering
University of Pennsylvania

IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP)
Brighton, UK — May 16, 2019

fgama@seas.upenn.edu Aggregation Graph Neural Networks 1/23



Graph Neural Networks

I Neural Networks ⇒ Information processing architectures (models)

⇒ Linear transform followed by activation function

I Design linear transform to fit a training set ⇒ Generalization

⇒ Minimize a cost function over the training set ⇒ Learn

I Linear transforms depend on the size of data ⇒ Do not scale

I Convolutional Neural Networks ⇒ Regularize linear operation

⇒ Linear transform is now a bank of filters ⇒ Convolution

linear transform bank of filters

fgama@seas.upenn.edu Aggregation Graph Neural Networks 2/23



Graph Neural Networks

I Network data ⇒ Data elements related by pairwise relationships

⇒ Irregular structure ⇒ Convolution does not work

I Aggregation graph neural networks

⇒ Exploit underlying graph topology

⇒ Regularize linear transform ⇒ Local architecture

⇒ Tools from Graph Signal Processing (GSP) framework

fgama@seas.upenn.edu Aggregation Graph Neural Networks 3/23



Neural Networks (NNs)

I Training set T = {(x, y)} with input-output pairs (x, y)

I Learning = Estimate output ŷ associated with input x /∈ T
⇒ Adopt a neural network architecture to map between x and ŷ

I Layer ` ⇒ Linear transform followed by pointwise nonlinearity

⇒ Cascade L layers (input x0 = x and output ŷ = xL)

x1 = σ1

(
A1x

)
, . . . , x` = σ`

(
A`x`−1

)
, . . . , xL = σL

(
ALxL−1

)
I Use T to find {A`} that optimize loss function

∑
T L(y, xL)

fgama@seas.upenn.edu Aggregation Graph Neural Networks 4/23



Convolutional Neural Networks (CNNs)

I Linear transform A` ⇒ Contains parameters to learn

⇒ Depends on the size of the input data (feature extraction)

⇒ Curse of dimensionality, large datasets, computationally costly, ...

I CNNs ⇒ Regularize linear transform ⇒ Small-support filters

⇒ Number of learnable parameters independent of size of data

⇒ Filtering ⇒ Output computed by convolution (efficiently)

⇒ Exploit underlying regular structure of data

⇒ Pooling ⇒ Local summaries ⇒ Multi-resolution

I Structural information of data ⇒ Constrain space of models

fgama@seas.upenn.edu Aggregation Graph Neural Networks 5/23



Network Data

I Relationship between data elements given by a network

⇒ Modeled by a graph G with N nodes and edge set E
I [x]i =Data value stored at node i ⇒ Graph signal x ∈ RN

I Graph topology encoded in graph shift operator (GSO) S ∈ RN×N

[S]ij 6= 0 ⇐⇒ i = j or (j , i) ∈ E

I Linear operation Sx locally relates data with underlying network

[Sx]i =
∑
j∈Ni

[S]i j [x]j ([S]ij = 0 if (j , i) /∈ E)

⇒ Linear combination of signal values in the one-hop neighborhood

I Extend descriptive power of GSP ⇒ Assign a vector to each node

⇒ x : V → RF ⇒ x = {xf }Ff =1, xf : graph signal for feature f

fgama@seas.upenn.edu Aggregation Graph Neural Networks 6/23



Aggregation Graph Neural Networks

I Input signal defined over graph with N nodes ⇒ Select a node

I Gather values from repeated exchanges with neighbors

I Resultant signal collected at the node has a regular structure

⇒ Consecutive values encode nearby information in the graph

I Regular convolution linearly relates neighboring values

I Regular pooling constructs adequate neighborhood summaries

⇒ Effective aggregation of information from local to global

fgama@seas.upenn.edu Aggregation Graph Neural Networks 7/23



Aggregation GNN

Input

zp =
[
[xg0 ]p, [Sx

g
0 ]p, [S

2xg0 ]p, [S
3xg0 ]p, . . . , [S

N−1xg0 ]p
]

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23



Aggregation GNN

Input

zp =
[
[xg0 ]p, [Sx

g
0 ]p, [S

2xg0 ]p, [S
3xg0 ]p, . . . , [S

N−1xg0 ]p
]

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23



Aggregation GNN

Input

zp =
[
[xg0 ]p, [Sx

g
0 ]p, [S

2xg0 ]p, [S
3xg0 ]p, . . . , [S

N−1xg0 ]p
]

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23



Aggregation GNN

Input

zp =
[
[xg0 ]p, [Sx

g
0 ]p, [S

2xg0 ]p, [S
3xg0 ]p, . . . , [S

N−1xg0 ]p
]

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23



Aggregation GNN

Input

zp =
[
[xg0 ]p, [Sx

g
0 ]p, [S

2xg0 ]p, [S
3xg0 ]p, . . . , [S

N−1xg0 ]p
]

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23



Aggregation GNN

Input

Convolution

[
ufg1

]
n

=
[
hfg1 ∗ zp

]
n

=
K1−1∑
k=0

[
hfg1

]
k

[
zp
]
n−k

=
K1−1∑
k=0

[
hfg1

]
k

[
Sn−kxg0

]
p

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23



Aggregation GNN

Input

Convolution

Pooling

[
vf1

]
n

= ρ1

([
uf1

]
n1

)
= %1

([
zp
]
n∈n1

)
= %1

([
Snxg0

]
p

)
n∈n1

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23



Aggregation GNN

Input

Convolution

Pooling

Output

zf1 = σ1(C1v
f
1)

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23



Regular Convolution

I Input xg0 is a signal over known N-node graph

I Select node p ∈ V ⇒ Perform local exchanges

I Consecutive elements encode nearby neighbors

zp =
[
[xg0 ]p, [Sx

g
0 ]p, [S

2xg0 ]p, . . . , [S
N−1xg0 ]p

]T

I Feature ufg1 is obtained from regular convolution[
ufg1

]
n

=
[
hfg1 ∗ zp

]
n

=
K1−1∑
k=0

[
hfg1

]
k

[
zp
]
n−k

=
K1−1∑
k=0

[
hfg1

]
k

[
Sn−kxg0

]
p

⇒ Effectively relates neighboring information encoded by the graph

fgama@seas.upenn.edu Aggregation Graph Neural Networks 9/23



Regular Pooling

I Regular pooling ⇒ n1 := {α1 consecutive elements of uf1}[
vf1

]
n

= ρ1

([
uf1

]
n1

)
= %1

([
zp
]
n∈n1

)
= %1

([
Snxg0

]
p

)
n∈n1

= %1

([
Sn+α1xg0

]
p
, . . . ,

[
Sn−K1xg0

]
p

)
⇒ Summary for the α1 + K1 neighborhood (of the original graph)

I Regular downsampling ⇒ One every N1 elements ⇒ zf1 = σ1(C1vf1)

⇒ [zf1]n ⇒ Summary from [(n − 1)N1 + α1 + K1] to [nN1 + α1 + K1]

fgama@seas.upenn.edu Aggregation Graph Neural Networks 10/23



Next Hidden Layers

I Input zg`−1 to layer ` exhibits a regular structure

⇒ Element [zg`−1]n represents a neighborhood summary

⇒ Consecutive elements contain nearby summaries
I Apply regular convolution ⇒ Linearly relate nearby summaries[

ufg`

]
n

=
[
hfg` ∗ z

g
`−1

]
n

=
K1−1∑
k=0

[
hfg1

]
k

[
zg`−1

]
n−k

I Regular pooling ⇒ n` = {α` consecutive elements of uf`}[
vf`

]
n

= ρ`

([
uf`

]
n`

)
= %`

([
zg`−1

]
n∈n`

)
⇒ Summary of a larger neighborhood ⇒ Change in resolution

I Regular downsampling ⇒ Select one every N` consecutive elements

zf` = σ`
(
C`v

f
`

)
⇒ Reduce dimensionality ⇒ Keep larger neighborhood summaries

fgama@seas.upenn.edu Aggregation Graph Neural Networks 11/23



Aggregation GNN: Observations

I Entirely local architecture ⇒ Only one node selected

⇒ Node gather all relevant information by local exchanges

⇒ The desired output is obtained at a single node

I Collected data has regular structure ⇒ Traditional CNN

⇒ Existing results on CNNs can be used in the design

I Large networks might demand too many local exchanges

⇒ Long time to collect all relevant information

fgama@seas.upenn.edu Aggregation Graph Neural Networks 12/23



Multi-Node Aggregation GNN

I Determine an initial subset of nodes (as opposed to only one)

⇒ Aggregate local information (at those nodes) ⇒ Few exchanges

I Regular structure ⇒ Aggregation GNN stage (regular CNN)

⇒ Obtain descriptive features of the aggregated neighborhood

I Features collected at a subset of nodes of original graph

⇒ Disseminate information ⇒ Zero-pad to fit the graph

I Select a smaller subset of nodes ⇒ Aggregate local information

I Aggregation GNN stage ⇒ Construct descriptive features

I Zero-pad, exchange, and so on...

fgama@seas.upenn.edu Aggregation Graph Neural Networks 13/23



Multi-Node Aggregation GNN

Input

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

Convolution

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

Convolution

Pooling

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

Convolution

Pooling

Output

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

Convolution

Pooling

Output

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

Convolution

Pooling

Output

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

Convolution

Pooling

Output

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN

Input

Convolution

Pooling

Output

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23



Multi-Node Aggregation GNN: First Layer

I Consider data matrix Xg
0 ∈ RN×N obtained from input xg0

Xg
0 =

[
S0xg0 ,S

1xg0 , . . . ,S
N−1xg0

]
=


[S0xg0 ]1 [S1xg0 ]1 · · · [SN−1xg0 ]1

[S0xg0 ]2 [S1xg0 ]2 · · · [SN−1xg0 ]2

...
...

. . .
...

[S0xg0 ]N [S1xg0 ]N · · · [SN−1xg0 ]N


I Select a subset P1 of nodes of the original graph (P1 row selection)

I Perform Q1 exchanges of information (Q1 column selection)

zg1 (0, p) =
[
[S0xg0 ]p, [S

1xg0 ]p, · · · , [SQ1−1xg0 ]p
]
, p ∈ P1

⇒ Each node gathers information up to the Q1-hop neighborhood

I Data gathered at each node has regular structure

⇒ Aggregation GNN with L1 layers at each node ⇒ F1 features

fgama@seas.upenn.edu Aggregation Graph Neural Networks 15/23



Next layer: Dimension mismatch

I The output z1(L1, p) ∈ RF1 is obtained from Aggregation GNN

⇒ Defined only over the set P1 of nodes ⇒ Not a graph signal

⇒ No GSO to keep exchanging information with neighbors

I Define the collection of feature f at each node

xf1 =
[
[z1(L1, p1)]f , . . . , [z1(L1, p|P1|)]f

]
, pk ∈ P1

⇒ Zero-pad to obtain x̃f1 = DT
1 x

f
1 that fits the original graph

I For outer layer r ⇒ Select a subset Pr ⊂ Pr−1 to further collect data

I Perform Qr exchanges with neighbors ⇒ Regular structure data

zgr (0, p) =
[
[x̃gr−1]p, [Sx̃

g
r−1]p, · · · , [SQr−1x̃gr−1]p

]
, p ∈ Pr

⇒ Qr -hop nodes have information from their Qr−1 neighborhood

I Aggregation GNN to create Fr features ⇒ zr (Lr , p) ∈ RFr

fgama@seas.upenn.edu Aggregation Graph Neural Networks 16/23



Numerical Experiments: Source Localization

I Consider a stochastic block model (SBM) with N = 100 nodes

⇒ C = 5 communities, 20 nodes each, pci ci = 0.8, pci cj = 0.2

I Assume node c started a diffusion at time t = 0

⇒ Graph signal ec has 1 in node c and zeros elsewhere

I Consider observations x = Atec for some unknown t > 0

I Localize the community c that originated the diffusion

I Dataset: 8, 000 training, 2, 000 validation, 200 test

I 10 graph realizations, 10 dataset realizations for each graph

I ADAM optimizer: learning rate 0.001; 40 epochs, 100 batch size

I Degree, experimentally designed sampling (EDS) and spectral proxies (SP)

fgama@seas.upenn.edu Aggregation Graph Neural Networks 17/23



Source Localization: Results

I (A): L = 2, K (1) = 4,K (2) = 8, F (1) = 16, F (2) = 32, half-pooling

I (MN): K (1) = K (2) = 3, F (1) = 16, F (2) = 32, P(1) = 10,P(2) = 5, Q(1) = 7,Q(2) = 5,
half-pooling

I Clustering (C): L = 2, F (1) = F (2) = 32, K (1) = K (2) = 5

Architecture Accuracy

Aggregation (A) Degree 94.2(±4.7)%
Aggregation (A) EDS 96.5(±3.1)%
Aggregation (A) SP 95.2(±4.4)%
Multinode (MN) Degree 96.1(±3.4)%
Multinode (MN) EDS 96.0(±3.5)%
Multinode (MN) SP 97.3(±2.7)%
Graph Coarsening (C) Clustering 87.4(±3.2)%

fgama@seas.upenn.edu Aggregation Graph Neural Networks 18/23



Numerical Experiments: Facebook network

I Same source localization problem ⇒ Identify community

⇒ 234 Facebook network subgraph with 2 communities (McAuley ’12)

I Dataset: 8, 000 training, 2, 000
validation, 200 test

I 10 random dataset realizations

I ADAM optimizer: learning rate
0.001; 80 epochs, 100 batch
size

I Degree, experimentally
designed sampling (EDS) and
spectral proxies (SP)

fgama@seas.upenn.edu Aggregation Graph Neural Networks 19/23



Facebook Network: Results

I (A): L = 2, K (1) = K (2) = 4, F (1) = 32, F (2) = 64, half-pooling

I (MN): K (1) = K (2) = 3, F (1) = 16, F (2) = 32, P(1) = 30,P(2) = 10, Q(1) = Q(2) = 5,
half-pooling

I Clustering (C): L = 2, F (1) = F (2) = 32, K (1) = K (2) = 5

Architecture Accuracy

Aggregation (A) Degree 95.8(±1.6)%
Aggregation (A) EDS 96.9(±1.2)%
Aggregation (A) SP 95.8(±1.4)%
Multinode (MN) Degree 97.6(±1.3)%
Multinode (MN) EDS 96.8(±1.2)%
Multinode (MN) SP 99.0(±0.8)%
Graph Coarsening (C) Clustering 95.2(±1.2)%

fgama@seas.upenn.edu Aggregation Graph Neural Networks 20/23



Numerical Experiments: Authorship Attribution

I Identify author of text excerpt

I Build word adjacency network

⇒ From training excerpts

I Word frequency as graph signal

I 19th century authors

⇒ Emily Brontë

I Dataset: 546 texts by Brontë to build WAN, 1000 words (nodes)

⇒ 1, 092 training texts excerpts, 272 testing text excerpts

I ADAM optimizer: learning rate 0.001; 40 epochs, 100 batch size

fgama@seas.upenn.edu Aggregation Graph Neural Networks 21/23



Authorship Attribution: Results

I (A): L = 3, K (1) = 6,K (2) = K (3) = 4, F (1) = 32, F (2) = 64, F (3) = 128, half-pooling

I (MN): K (1) = K (2) = 3, F (1) = 16, F (2) = 32, P(1) = 30,P(2) = 10, Q(1) = Q(2) = 5,
half-pooling

I Clustering (C): L = 2, F (1) = F (2) = 32, K (1) = K (2) = 5

Architecture Accuracy

Aggregation (A) Degree 69.5(±2.0)%
Aggregation (A) EDS 71.0(±2.8)%
Aggregation (A) SP 69.2(±4.0)%
Multinode (MN) Degree 80.4(±2.0)%
Multinode (MN) EDS 80.5(±2.6)%
Multinode (MN) SP 79.9(±2.8)%
Graph Coarsening (C) Clustering 65.2(±5.0)%

fgama@seas.upenn.edu Aggregation Graph Neural Networks 22/23



Conclusions & Other Extensions

I Regularize neural networks to exploit underlying graph topology

⇒ Local architecture ⇒ Exchanges with neighboring nodes

I Aggregation GNN: collects data at one node ⇒ Regular structure

⇒ Process regular data by using traditional CNNs

⇒ Multi-node GNN: avoids the need of a large number of exchanges

I Tested on source localization and authorship attribution

I Journal: IEEE Trans. Signal Process., 67(10), 1034-1049, Feb. 2019.

I Other extensions in graph neural networks:

⇒ Extend nonlinearities to include neighborhoods: arXiv:1903.12575, today 6pm, syndicate 1.

⇒ Stability of GNNs under topology perturbations: arXiv:1905.04497

⇒ Gated graph recurrent neural networks: arXiv:1903.01888

⇒ Generalization through edge-varying recursions: arXiv:1903.01298

⇒ Application to learning decentralized controllers: arXiv:1903.10527

fgama@seas.upenn.edu Aggregation Graph Neural Networks 23/23


