Sample Space-Time Covariance Estimation

Connor Delaosa ${ }^{1}$, Jennifer Pestana, Nicholas J. Goddard, Sam. Somasundaram \& Stephan Weiss

${ }^{1}$ Department of Electronic \& Electrical Engineering University of Strathclyde, Glasgow, Scotland

44 ${ }^{\text {th }}$ International Conference on Acoustics, Speech, and Signal Processing
$16^{\text {th }}$ May 2019, Brighton

Presentation Overview

1. Background Theory \& Motivation
2. Source Model and Space-Time Covariance Matrix
3. Estimation
4. Variance of the Estimate and Results
5. Application of Research
6. Conclusion

Background

- In the field of broadband array processing, we can use polynomial matrices to extend narrowband problems to the broadband domain
- For the past decade, research has been focused on the polynomial eigenvalue decomposition (PEVD)
- Two well-known time-domain iterative algorithms, SBR2 ${ }^{1}$ and SMD^{2}, have been developed
- Many variations on these have been created

- Space-time covariance matrices comprise of auto- and cross-correlation sequences
${ }^{1}$ Second-Order Sequential Best Rotation Algorithm
${ }^{2}$ Sequential Matrix Diagonalisation

Motivation

- The performance of these methods is of importance to a number of applications
- We have a gap in the connection between theory and practice

Source Model

- We express the data vector $\mathbf{x}[n]$ through a source model
- As a result of the source model used, the ground truth S-T covariance matrix is expressed as

$$
\begin{equation*}
\mathbf{R}[\tau]=\mathbf{H}[\tau] * \mathbf{H}^{\mathrm{H}}[-\tau] \tag{1}
\end{equation*}
$$

- This matrix satisfies the symmetry property $\mathbf{R}[\tau]=\mathbf{R}^{\mathrm{H}}[-\tau]$

Sample Space-Time Covariance Matrix

- $\mathbf{R}[\tau]$ is not available in practice
- The cross-correlation must be unbiased in order for a rank- M matrix to exist
- We can calculate the error matrix, $\mathbf{E}[\tau]=\hat{\mathbf{R}}[\tau]-\mathbf{R}[\tau]$, as a measure of the perturbation in our ground-truth
- The effect of the perturbation of eigenvalues and -vectors due to this estimation has been investigated

$$
\hat{r}_{m \mu}[\tau]= \begin{cases}\frac{1}{N-|\tau|} \sum_{n=0}^{N-|\tau|-1} x_{m}[n+\tau] x_{\mu}^{*}[n], & \tau \geq 0 \tag{2}\\ \frac{1}{N-|\tau|} \sum_{n=0}^{N-|\tau|-1} x_{m}[n] x_{\mu}^{*}[n-\tau], & \tau<0\end{cases}
$$

Variance of the Estimator

- The estimate is dependent on the sensor data
- Still the same underlying ground truth
- The cross correlation can be measured across ensembles where the distribution was previously unknown
- Spatial-only lag $(\tau=0)$ is known to be Wishart distributed
- The variance of our estimator is derived to be

$$
\begin{align*}
\operatorname{var}\left\{\hat{r}_{m \mu}[\tau]\right\}= & \frac{1}{(N-|\tau|)^{2}} \sum_{t=-N+|\tau|+1}^{N-|\tau|-1}(N-|\tau|-|t|) . \\
& \cdot\left(r_{m m}[t] r_{\mu \mu}^{*}[t]+\bar{r}_{m \mu}[\tau+t] \bar{r}_{m \mu}^{*}[\tau-t]\right) \tag{3}
\end{align*}
$$

where $\bar{r}_{m \mu}[\tau]=\mathcal{E}\left\{x_{m}[n] x_{\mu}[n-\tau]\right\}$

Variance of Estimate: Real-Valued data

- For real-valued \mathbf{x}_{m} and \mathbf{x}_{μ} with $L=1, N=100$ and over an ensemble of size 10^{4}

Variance of Estimate: Complex-Valued data
 - For complex-valued \mathbf{x}_{m} and \mathbf{x}_{μ}

Optimum Support Length

- We define the mean squared error, ξ, which comprises of the estimation error and truncation error i.e. $\xi=\xi_{1}+\xi_{2}$
- $T_{\text {opt }}=\arg \min _{T} \xi$

Conclusion

We have discussed:

- Background of Polynomial/Parahermitian Matrices
- Ground-truth model and construction of the true space-time covariance matrix
- Definition and statistics of an estimated space-time covariance matrix
- Demonstration of simulation results for mean and variance (experimental vs theoretical)
- Application of research - Optimum Support Length

