

A D N A 目 N A E N A E N A B N A C N

Sample Space-Time Covariance Estimation

Connor Delaosa¹, Jennifer Pestana, Nicholas J. Goddard, Sam. Somasundaram & Stephan Weiss

¹Department of Electronic & Electrical Engineering University of Strathclyde, Glasgow, Scotland

44th International Conference on Acoustics, Speech, and Signal Processing 16th May 2019, Brighton

Presentation Overview

- 1. Background Theory & Motivation
- 2. Source Model and Space-Time Covariance Matrix
- 3. Estimation
- 4. Variance of the Estimate and Results
- 5. Application of Research
- 6. Conclusion

Background

- In the field of broadband array processing, we can use polynomial matrices to extend narrowband problems to the broadband domain
- For the past decade, research has been focused on the polynomial eigenvalue decomposition (PEVD)
- Two well-known time-domain iterative algorithms, SBR2¹ and SMD², have been developed
- Many variations on these have been created
- Space-time covariance matrices comprise of auto- and cross-correlation sequences

¹Second-Order Sequential Best Rotation Algorithm ²Sequential Matrix Diagonalisation

Motivation

- The performance of these methods is of importance to a number of applications
- ▶ We have a gap in the connection between theory and practice

- We express the data vector x[n] through a source model
- As a result of the source model used, the ground truth S-T covariance matrix is expressed as

$$\mathbf{R}[\tau] = \mathbf{H}[\tau] * \mathbf{H}^{\mathrm{H}}[-\tau]$$
(1)

• This matrix satisfies the symmetry property $\mathbf{R}[\tau] = \mathbf{R}^{\mathrm{H}}[-\tau]$

Sample Space-Time Covariance Matrix

- $\mathbf{R}[\tau]$ is not available in practice
- The cross-correlation must be unbiased in order for a rank-M matrix to exist
- We can calculate the error matrix, $\mathbf{E}[\tau] = \hat{\mathbf{R}}[\tau] \mathbf{R}[\tau]$, as a measure of the perturbation in our ground-truth
- The effect of the perturbation of eigenvalues and -vectors due to this estimation has been investigated

$$\hat{r}_{m\mu}[\tau] = \begin{cases} \frac{1}{N-|\tau|} \sum_{n=0}^{N-|\tau|-1} x_m[n+\tau] x_{\mu}^*[n] , & \tau \ge 0\\ \frac{1}{N-|\tau|} \sum_{n=0}^{N-|\tau|-1} x_m[n] x_{\mu}^*[n-\tau] , & \tau < 0 \end{cases}$$
(2)

Variance of the Estimator

- The estimate is dependent on the sensor data
 - Still the same underlying ground truth
- The cross correlation can be measured across ensembles where the distribution was previously unknown
 - Spatial-only lag (au = 0) is known to be Wishart distributed
- The variance of our estimator is derived to be

$$\operatorname{var}\{\hat{r}_{m\mu}[\tau]\} = \frac{1}{(N-|\tau|)^2} \sum_{t=-N+|\tau|+1}^{N-|\tau|-1} (N-|\tau|-|t|) \cdot \left(r_{mm}[t]r_{\mu\mu}^*[t] + \bar{r}_{m\mu}[\tau+t]\bar{r}_{m\mu}^*[\tau-t]\right)$$
(3)

where $\bar{r}_{m\mu}[\tau] = \mathcal{E}\{x_m[n]x_\mu[n-\tau]\}$

Variance of Estimate: Real-Valued data

For real-valued \mathbf{x}_m and \mathbf{x}_μ with L = 1, N = 100 and over an ensemble of size 10^4

Overview Background Motivation Source Model Estimation Variance Support Conclusion

Variance of Estimate: Complex-Valued data

Optimum Support Length

We define the mean squared error, ξ, which comprises of the estimation error and truncation error i.e. ξ = ξ₁ + ξ₂

Conclusion

We have discussed:

- Background of Polynomial/Parahermitian Matrices
- Ground-truth model and construction of the true space-time covariance matrix
- Definition and statistics of an estimated space-time covariance matrix
- Demonstration of simulation results for mean and variance (experimental vs theoretical)
- Application of research Optimum Support Length