CHUTE BASED AUTOMATED FISH LENGTH MEASUREMENT AND WATER DROP DETECTION ¹Department of Electrical Engineering, University of Washington, Seattle, WA, USA ²Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA

INTRODUCTION

- Electronic monitoring (EM) system on federal fisheries
 - Segmentation
 - Measurement
 - Species

Challenges

- Live fish may deform freely
- Camera can be splashed by water

Contribution of this work

- Morphological midline
- Water drop detection

SYSTEM OVERVIEW

Automated chute-based fish measurement system

Input image

Projective transform to de-skew the fish image

Foreground segmentation using GMM

Recursive morphological operation

> Midline points and measurement

Image gradient and sharpness on contour

Blur measure and

MORPHOLOGICAL MIDLINE

WATER DROP DETECTION

- Sharpness \propto image gradient: $m(x) = \frac{\|\nabla z(x)\|_2}{z(x)}$
- Separate the contour points in C into: sharp points, $S = \{x \in C | m(x) > \theta_T\}$ blurry points, $B = \{x \in C | m(x) \le \theta_T\}$,where θ_T is the Otsu's threshold
- **Blur measure** \propto (min density of S)⁻¹: $blur(C) = \frac{p_C(S)}{\min_{|h|=N} p_h(S)}$,where h is a contiguous window on C
- If blur(C) is larger than a threshold, we conclude there is a water drop.

Tsung-Wei Huang¹, Jenq-Neng Hwang¹, Craig S. Rose²

the fish mask to approximate the morphological erosion.

RESULTS

Straight body

Water drop detection

This research is part of the NMFS Fisheries Monitoring and Analysis Division's EM innovation project located at the Alaska Fisheries Science Center, and supported by NMFS funding and the Alaska Fisheries Science Center's Electronic Monitoring Innovation Program.

[1] D.J. White, C. Svellingen, and N.J.C. Strachan, "Automated Measurement of Species and Length of Fish by Computer Vision," *Fisheries Research*, vol. 80, pp. 203-210, 2006.

Curved body

Forked tail

Mean of Absolute Error of Different Species of Fishes Midline Species (number) [1] Box Arrowtooth Flounder (722) 2.1% 1.6% 1.7% Flathead Sole (450) 1.1% 1.2% 1.1% Pacific Cod (282) 1.4% 1.1% 1.1% Pacific Halibut (213) 3.8% 1.6% <u>1.3%</u> <u>2.7%</u> 3.0% 5.5% Pacific Ocean Perch (156) 1.5% Rex Sole (178) 1.5% 1.4% Shortspine Thornyhead (210) 2.0% 2.7% 1.9% 1.6% 1.7% Southern Rock Sole (316) <u>1.5%</u> <u>1.3%</u> 2.3% 1.9% Walleye Pollock (839) 1.8% Yellow Irish Lord (71) 2.1% 1.8% Yellowfin sole (134) 1.3% 1.1% 1.5%

Blur Measure

Total (3571)

With water drop

1.68%

2.14%

1.49%

False positive

ACKNOWLEDGEMENT