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Signal Model and Motivation

Signal model: Observed matrix XXX ∈ Rn1×n2 modeled as

XXX =MMM +SSS +NNN (1)

• MMM : low-rank matrix of rank r,

• SSS: column or entry-wise sparse outlier matrix

• NNN : (impulsive) background noise

Goal: Recover the low-rank component MMM from partially observed entries of XXX corrupted

by noise and outliers.

Applications: recommender systems, computer vision, image inpainting, biomedicine,

information retrieval

Existing Robust Matrix Completion Approaches

Robust ℓp-loss based methods [1]:

⊕ robust and computationally efficient

⊖ statistically inefficient with respect to additional background noise

⊖ easily get stuck at an inferior solution (nonsmooth objective function)

Nuclear norm regularization of Huber’s loss function approach [2]:

⊖ requires SVD at each iteration and has a high complexity

Proposed Robust M-Estimation Based Approach

Outlier-robust “norm” of XXX is defined as
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•σ > 0: scale parameter

• x i j: (i, j)th entry of XXX

•ρ(·): differentiable loss function, e.g.

Huber’s
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• c: tuning parameter trades off the efficiency and robustness.

Proposed robust M-estimation based matrix completion:

min
UUU ,VVV
‖(UUUVVV )Ω− XXXΩ‖σ,c (3)

• Computationally efficient direct matrix factorization ÒMMM = UUUVVV , where UUU ∈ Rn1×r and

VVV ∈ Rr×n2 to make the estimate ÒMMM low-rank

• (XXXΩ)i j = 0 if (i, j) /∈ Ω and (XXXΩ)i j = x i j if (i, j) ∈ Ω.

•σ: unknown and is estimated jointly with (UUU ,VVV )

• c: constant that is set in advance

Algorithms

Algorithm 1: Huber’s M-estimator

Input: XXXΩ, Ω, and rank r

Initialize: Randomly initialize UUU0 ∈ Rn1×r

Determine {I j}
n2

j=1
and {Ji}

n1

i=1
according to Ω.

for k = 0,1, · · · do

// Fix UUUk, optimize VVV
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for all j = 1,2, · · · , n2.

// Fix VVV k+1, optimize UUU
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for all i = 1,2, · · · , n1.

Stop if a termination condition is satisfied.

end for

Output: ÒMMM = UUUk+1VVV k+1

⊕ Per-iteration complexity of M-estimation based matrix completion using Huber’s loss:

O (|Ω|r2). → attractive tool for the “big data” setting.

⊕ guaranteed convergence to stationary point

Theorem The sequence generated by Algorithm 1, i.e., {UUUk,VVV k}, converges to a stationary

point of the nonconvex problem of (3).

A proof is provided in the paper.

Algorithm 2: Tukey’s M-estimator The estimate obtained from Algorithm 1 is

used as starting point for Tukey’s M-estimator, which solves
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using an iteratively reweighted least-squares (IRWLS) algorithm.

Download Matlab Robust Signal Processing Toolbox [3]:

https://github.com/RobustSP/

Results

Results for synthetic random data:
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• n1 = 150, n2 = 300, and r = 10.

• MMM = XXX 1XXX 2 where XXX 1 ∈ R
n1×r and XXX 2 ∈ R

r×n2 are Gaussian random matrices.

• NNN : impulsive Gaussian mixture model (GMM) noise

Image inpainting in salt-and-pepper noise:

TukeyHuberℓ1-reg

ℓ2-regoriginal incomplete noisy

Peak Signal-to-Noise Ratio (PSNR) in dB at SNR = 6 dB

baseline 10.83

ℓ2-regression 19.18

ℓ1-regression 21.61

proposed Huber’s M 23.29

proposed Tukey’s M 23.71
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