Denoising Adversarial Networks for Rain Removal and Reflection Removal Qian Zheng¹, Boxin Shi², Xudong Jiang¹, Ling-Yu Duan², and Alex C. Kot¹ ¹Nanyang Technological University, Singapore, ²Peking University, Beijing, China

Overview

This paper presents a novel adversarial scheme to perform image denoising for the tasks of rain streak removal and re-flection removal, *i.e.*, jointly learn the prior/gradient image and noise-free image based on an adversarial scheme. More specifically, the inferred noise-free image guided by an estimated gradient (fake gradient) is regarded as a negative sample, while the noise-free image guided by the ground truth of a gradient (real gradient) is taken as a **positive sample**. With the **anchor** defined by the ground truth of noise-free image, we play a min-max game to jointly train two optimizers for the estimation of the gradient and the inference of noise-free images. State-of-the-art performance is achieved on two public benchmark datasets.

Objective Function

 $\min_{g} \max_{h} d(\mathbf{B}_{a}, \mathbf{B}_{n}) - d(\mathbf{B}_{a}, \mathbf{B}_{p}), \quad \text{s.t.}$ $\mathbf{B}_{n} = h(\mathbf{M}, \mathbf{G}_{f}) = h(\mathbf{M}, g(\mathbf{M})), \quad \mathbf{B}_{p} = h(\mathbf{M}, g(\mathbf{M})),$

Optimize an h to distinguish whether a sample is inferred guiding by a fake or real gradient. Optimize a g to fool the h.

Differences from GAN:

- minimize KL-divergence

min max $d(\mathbf{B}_{a})$ $\approx \min_{a} d(\mathbf{B}_{p}, \mathbf{B}_{n}) = \min_{a}$

Implementation Details

Loose objective function as min max $d(\mathbf{B}_a)$, **Algorithm:** for number of training iterations do for 5 steps do

end for update g by descending its stochastic gradient:

end for

$$d(\mathbf{B}_{a}, \mathbf{B}_{p}) < \delta$$

Min-Max Optimization

1. Focus on the output of h vs. focus on the output of g2. Minimize the difference between G_f and G_r vs.

$$(\mathbf{B}_{n}, \mathbf{B}_{n}) - d(\mathbf{B}_{a}, \mathbf{B}_{p})$$

$$\inf d\left(h(\mathbf{M}, \mathbf{G}_r), h(\mathbf{M}, \mathbf{G}_f)\right)$$

constraint $d(\mathbf{B}_a, \mathbf{B}_p) < \delta$ and reformulate

$$(\mathbf{B}_n) - \alpha d(\mathbf{B}_a, \mathbf{B}_p)$$

sample minibatch of *m* data pairs from training data: $\left\{ \left(\mathbf{M}^{(1)}, \mathbf{B}^{(1)}_{a} \right), \dots, \left(\mathbf{M}^{(m)}, \mathbf{B}^{(m)}_{a} \right) \right\}$ update *h* by ascending its stochastic gradient: $\nabla_{\theta_h} \frac{1}{m} \sum_{i=1}^m \left(d(\mathbf{B}_a, \mathbf{B}_n) - \alpha d(\mathbf{B}_a, \mathbf{B}_p) \right)$

 $\nabla_{\theta_a} \frac{1}{m} \sum_{i=1}^m d(\mathbf{B}_a, \mathbf{B}_n)$

Results of rain removal on DIDMDN-DATA [ZP18]

Metric	FH17	YT17	ZP18	LH18	Ours
SSIM	0.7057	0.8763	0.8707	0.9192	0.9331
PSNR	23.53	30.35	28.30	33.16	33.43

Input

Results of reflection removal on SIR² [WS17]

Metric	AA17	FY17	WS18	ZN18	Ours
SSIM	0.8614	0.8649	0.8907	0.8981	0.9022
SI	0.8979	0.8896	0.9160	0.9150	0.9229

Input

CVPR, 2018 ACM Multimedia, 2018 smoothing. ICCV, 2017

Performance

Ground truth

LH18 (SSIM:0.9443) Ours (SSIM:0.9637)

Ground truth

ZN18 (SSIM:0.8957) Ours (SSIM:0.9275)

References

[ZP18] H Zhang and V M Patel. Density-aware single image de-raining using a multi-stream dense network.

[WS17] R Wan, B Shi, and et al. Benchmarking single-image reflection removal algorithms. ICCV, 2017 [FH17] X Fu, J Huang, and et al. Removing rain from single images via a deep detail network. CVPR, 2017 [YT17] W Yang, R T Tan, and et al. Deep joint rain detection and removal from a single image. CVPR, 2017 [LH18] G Li, X He, and et al. Non-locally enhanced encoder-decoder network for single image de-raining.

[AA17] N Arvanitopoulos, R Achanta, and et al. Single image reflection suppression. CVPR, 2017 [FY17] Q Fan, J Yang, and et al. A generic deep architecture for single image reflection removal and image

[WS18] R Wan, B Shi, and et al. Crrn: Multi-scale guided concurrent reflection removal network. CVPR,

[ZN18] X Zhang, R Ng, and et al. Single image reflection separation with perceptual losses. CVPR, 2018