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Perceptual Video Quality Assessment (VQA)

Purpose
Development of quantitative measures that can automatically predict the
perceived quality of videos

Objective VQA
Types of Objective VQA Models:

Full-Reference (FR) VQA

Reduced-Reference (RR) VQA

No-Reference (NR) VQA

Development of objective VQA models requires subject-rated databases
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Limitations of Existing Work

Existing subject-rated databases for High Dynamic Range (HDR) videos
[Banitalebi-Dehkordi, 2014], [Narwaria, 2015], [Rerabek, 2015],
[Minoo, 2015], [Mukherjee, 2016], [Azimi, 2018] have the following
limitations:

Maximum spatial resolution is Full High Definition (FHD)

Color gamut of content/displays is limited to BT.709

Maximum temporal resolution is usually 30 frames per second (fps)

Fixed distortion levels (bit rates) regardless of content complexity are
used

Evaluation of state-of-the-art FR and NR methods is missing
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Waterloo UHD-HDR-WCG Database

Reference Content Characteristics
14 high-quality reference videos in YUV file format

Length of each video: 10 seconds

Ultra High Definition (UHD) resolution (3840 x 2160)

Bit depth: 10 bits (Luma)

Wide Color Gamut (WCG): BT.2020 color primaries

YUV 4:2:0 chroma format

SMPTE ST 2084 (PQ) transfer function

Frame rate: 59.94 fps (9 videos) and 24 fps (5 videos)
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Waterloo UHD-HDR-WCG Database

Distorted Content Characteristics
Focus: To study the impact of compression on UHD-HDR-WCG content

Two encoders used (H.264 and HEVC)

Five content-adaptive distortion levels (bitrates) for each encoder

Overall 140 distorted videos in YUV file format

Impact of Content-Adaptive Distortion Levels

(a) Preliminary FHD database with
fixed bitrates

(b) Waterloo UHD-HDR-WCG database
with content-adaptive bitrates
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Hardware Setup

Canon DP-V2420 Reference Display
4K/UHD HDR Mastering monitor

Screen Size: 24 inch

Compatible with Academy Color Encoding System (ACES)

Supports WCG (BT.2020)

Peak Luminance: 1000 cd/m2

Minimum black level: 0.005 cd/m2

Supports SMPTE ST 2084 (PQ) transfer function

Quad 3G Serial Digital Interface (SDI) with throughput of 12 Gbits/s
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Hardware Setup

Dedicated Hardware Pipeline
Maximum throughput requirement: 11.12 Gbits/s
Workstation

Stores the entire database (1.64 TBytes) in a 2 TByte Samsung 960 Pro
SSD (read speed up to 3.5 GBytes/s)
32 GBytes 3000 MHz DDR4 RAM (holds each video while playing)

Blackmagic Design Ultrastudio 4K Extreme 3
Connected to the workstation through a Blackmagic Design PCI Express
Cable Kit
Splits single input data stream into four streams connected to a Quad SDI
output interface
Output of Ultrastudio connected to the Canon Reference Display

Customized video playback software developed using Blackmagic
Design Software Development Kit (SDK)
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Subjective Study

Salient Features
51 subjects aged between 18 and 35

29 males and 22 females
43 naïve and 8 experts

Single stimulus with hidden reference methodology

Viewing distance approximately twice the screen height

Two 30-minutes rating sessions with a mandatory break in-between

Dark room environment

Scores range: 0 to 100 (higher for better quality)

Scoring GUI allowed selection of integers through sliding bar
Training session preceded the study

Five training videos (No overlap with test set)
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Data Processing

Steps
1 Raw scores converted to Z-scores

Accounts for the quality scale variations between subjects
2 Outlier removal procedure according to Rec. ITU-R BT.500-13

9 subjects removed
3 Mean Opinion Score (MOS) for each content computed from Z-scores
4 MOS rescaled to the 0 to 100 range

MOS distribution is preserved
Maintains overall mean and variance of raw scores
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Data Processing

Mean Opinion Score (MOS) Generation Mechanism

Subjective 

Raw Data

Convert to 

Z-Scores

Final MOS

MOS from 

Z-Scores

Outlier 

Removal

Rescaling
Find µrmos 

and σrmos

MOS from 

Raw Data

Find µzmos 

and σzmos

Rescaling

MOS = σrmos

[
MOSz − µzmos

σzmos

] + µrmos (1)
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Data Processing

Spearman Rank Correlation Coefficient between MOS and Individual Subjects
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Performance of Objective Models

Evaluation Criteria
Prediction Accuracy

Pearson Linear Correlation Coefficient (PLCC)
Root Mean Square Error (RMSE)

Prediction Monotonicity
Spearman Rank order Correlation Coefficient (SRCC)

Statistical Significance Testing on prediction residuals
Jarque-Bera test to determine Gaussianity of residuals
Hypothesis testing through the F-test

Number of Objective Models Evaluated
11 FR Models

Including HDRVDP2 and HDRVQM (designed for HDR content)

7 NR Models
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Performance of Objective Models

Category Method PLCC SRCC RMSE

FR

DSS [Balanov, 2015] 0.7685 0.7456 12.3718
ESSIM [Zhang, 2013] 0.8512 0.8389 10.1485
FSIM [Zhang, 2011] 0.8693 0.8564 9.5568
GMSD [Xue, 2014] 0.7366 0.7045 13.0781
GSIM [Liu, 2012] 0.8596 0.8453 9.8812
HDRVDP2 [Mantiuk, 2011] 0.7035 0.6703 13.7423
HDRVQM [Narwaria, 2015] 0.7783 0.7759 12.1428
IWSSIM [Wang, 2011] 0.8088 0.7861 11.3730
PSNR 0.5113 0.4615 16.6185
SRSIM [Zhang, 2012] 0.8726 0.8630 9.4462
VIFDWT [Rezazadeh, 2013] 0.6809 0.6748 14.1612

NR

BRISQUE [Mittal, 2012] 0.3622 0.3271 18.0241
CORNIA [Ye, 2012] 0.6497 0.6296 14.7003
dipIQ [Ma, 2017] 0.6192 0.5560 15.1845
HOSA [Xu, 2016] 0.5379 0.5138 16.3015
LPSI [Wu, 2015] 0.3941 0.3820 17.7718
NIQE [Mittal, 2013] 0.5286 0.4922 16.4152
VMEON [Liu, 2018] 0.5776 0.5308 15.7845
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Performance Analysis

FR Methods
SRSIM is the top performing FR method

Performance of ESSIM, GSIM, and FSIM is statistically
indistinguishable from SRSIM

Above methods are developed for Low Dynamic Range (LDR) content
and inherit a similar formulation of signal fidelity measurement from
SSIM [Wang, 2004]

HDR specific FR methods (HDRVDP2 and HDRVQM) do not offer
superior performance

LDR FR methods may be extended for HDR VQA
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Performance Analysis

NR Methods
All NR methods perform inadequately

CORNIA is the top performing NR method

All NR methods under test were developed for LDR content

There is significant room for improvement in HDR specific design
innovations

20 / 27



Introduction
Database Construction and Hardware Setup

Subjective Study and Data Processing
Performance of Objective Models

Conclusions

Performance Analysis

Objective Model Performance on Individual Distortion Types
Models perform similarly on H.264 and HEVC compression

Example below shows scatter plots for top performing FR (SRSIM) and
NR (CORNIA) models
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Summary

Contributions
Constructed a first-of-its-kind Waterloo UHD-HDR-WCG database

Carried out a first-of-its-kind subjective study on a professional HDR
Reference Display with a dedicated hardware pipeline
Proposed a novel method to process subjective data

Accounts for subject quality scale variations
Preserves distribution of data and keeps the overall mean and standard
deviation of subjective scores unchanged

Evaluated the performance of 11 FR and 7 NR objective models
FR models developed for LDR content can be used as a basis for new
UHD-HDR-WCG FR VQA models
Substantial room for improvement exists when it comes to NR VQA of
UHD-HDR-WCG content
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