

Prashant W. Patil, Omkar Thawkar, Akshay Dudhane and Subrahmanyam Murala CVPR lab, IIT Ropar, INDIA

MOTIVATION

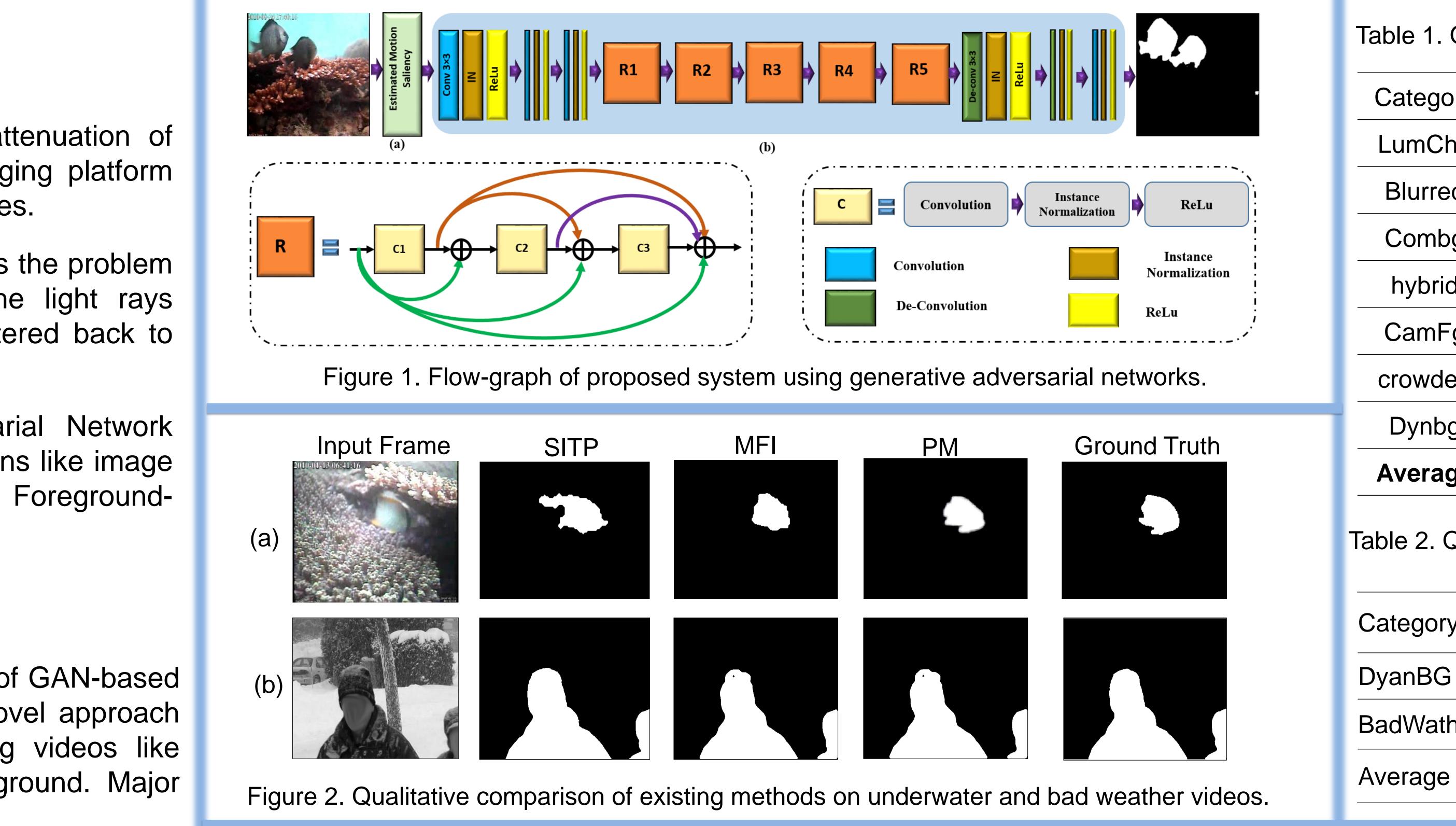
- Problems like absorbing, scattering and attenuation of light rays between the scene and the imaging platform degrades the visibility of image or video frames.
- Back-scattering of light rays further increases the problem of underwater video analysis, because the light rays interact with underwater particles and scattered back to the sensor.
- Extra-ordinary results Generative Adversarial Network (GAN) for various computer vision applications like image de-hazing, super-resolution, image background segmentation, etc.

MAJOR CONTRIBUTIONS

Limitations of existing approaches and results of GAN-based approaches are motivated us to propose a novel approach for video frame segmentation for challenging videos like underwater, bad weather and dynamic background. Major contributions of the work are given below:

- The frame wise motion saliency is estimated using few and current video frame instead of current and initial previous video frames only.
- Generative adversarial network with identity mapping and dense connections is proposed for MOS of underwater videos.
- The segmentation accuracy is compared with the existing Fish4Knowledge benchmark methods on ChangeDetection.net-2014 video database.

MOTION SALIENCY BASED GENERATIVE ADVERSARIAL NETWORK FOR UNDERWATER MOVING OBJECT SEGMENTATION



and

CONCLUSION

- dense connections.
- background and bad weather videos

REFERENCES

- **Computer Vision**, 2018.

We have proposed a novel unpaired motion saliency learning approach for foreground segmentation in underwater videos with identity mapping and

From experimental analysis, it is evident that the proposed approach outperforms the existing state-of-the-art methods for underwater, dynamic

Zhu et al., "Unpaired image-to-image translation using cycle-consistent adversarial networks," in ICCV, 2017. Prashant et al., "Fggan: A cascaded unpaired learning for background estimation and foreground segmentation," in IEEE WACV, 2019. Srikanth et al., "Automatic underwater moving object detection using multi-feature integration framework in complex backgrounds," IET

CVPRLAB. IL ROPAR.

Table 1. Quantitative results comparison on Fish4Knowledge dataset

ory	TBG	MCB	SEB	STP	MFI	PM
hg	0.91	0.85	0.82	0.84	0.92	0.96
ed	0.68	0.86	0.59	0.74	0.89	0.93
bg	0.58	0.48	0.21	0.73	0.83	0.92
id	0.46	0.72	0.42	0.69	0.82	0.89
Fg	0.66	0.77	0.42	0.66	0.72	0.75
led	0.74	0.68	0.67	0.67	0.69	0.74
bg	0.32	0.33	0.81	0.32	0.64	0.79
ige	0.62	0.67	0.56	0.66	0.79	0.85

Table 2. Quantitative results comparison on bad weather and dynamic background videos.

ry	DeepBS	GoogleNet	MSCNN	VGG	ResNet	PM
G	0.81	0.65	0.92	0.73	0.82	0.97
th	0.92	0.79	0.94	0.89	0.93	0.94
e	0.86	0.72	0.93	0.81	0.87	0.96