

Faculty of Engineering & Information Technology

Motivation & Contributions

> Motivation

- Hand-crafted 3D keypoint feature descriptors are unstable and difficult to adapt to new scenes.
- Supervised deep learning based 3D keypoint feature extraction methods require huge amounts of point-level annotated data for training, while annotating training data is labor- and time-consuming.

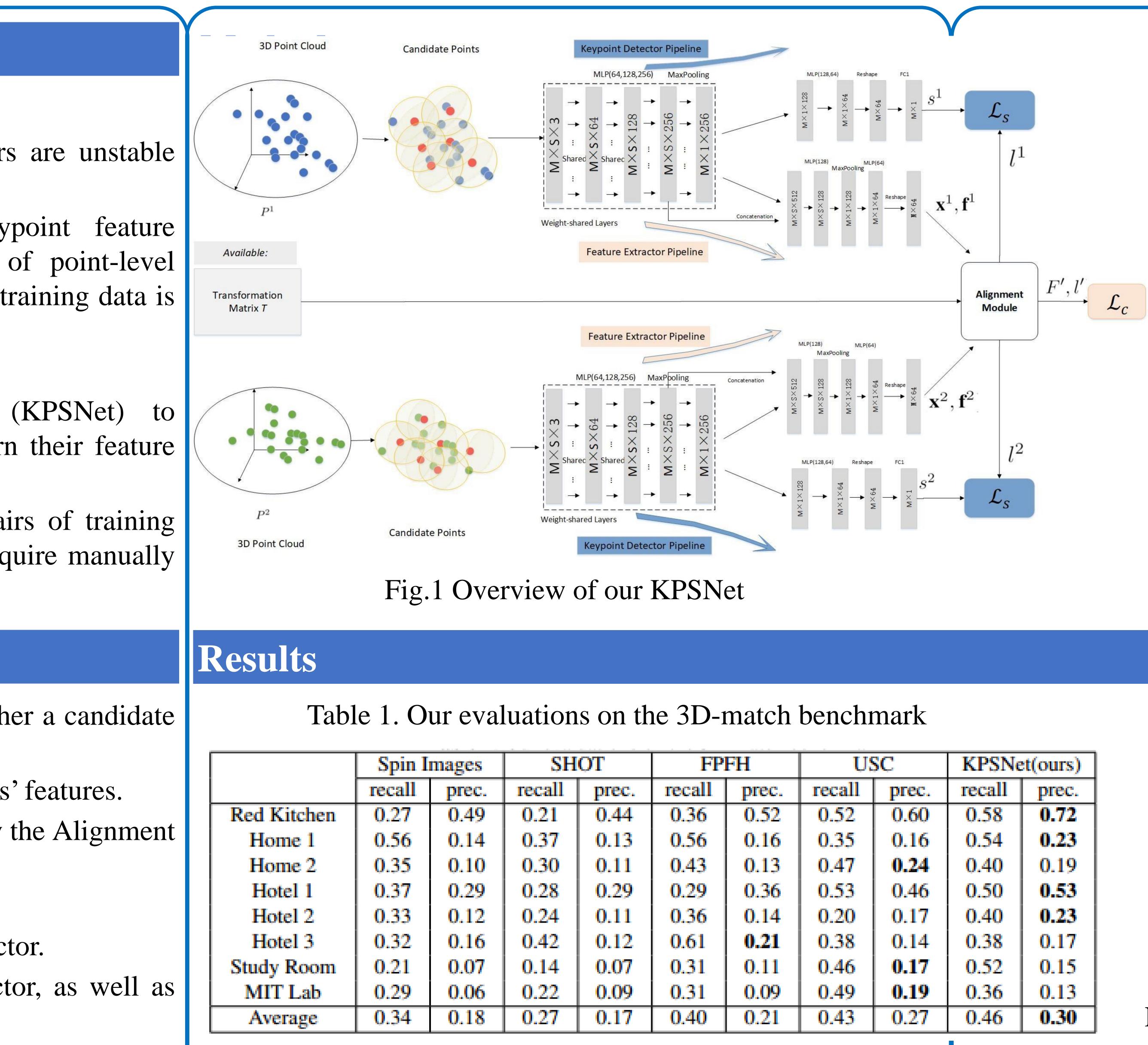
> Contributions

- Present a KeyPoint Siamese Network (KPSNet) simultaneously detect 3D keypoints and learn their feature representations.
- Design an alignment module to generate pairs of training samples and label them on-the-fly, do not require manually annotating 3D keypoints.

Method

- Keypoint detector learns to discriminate whether a candidate is a keypoint or not.
- Feature extractor learns to extract the keypoints' features.
- The required labels for training is generated by the Alignment Module.
- **Alignment Module**
- Label each candidate as 0/1 for keypoint detector.
- Generate pairs of samples for feature extractor, as well as labeling them as positive/negative.

KPSNET: KEYPOINT DETECTION AND FEATURE EXTRACTION FOR POINT CLOUD REGISTRATION Anan Du¹, Xiaoshui Huang, Jian Zhang, Lingxiang Yao, Qiang Wu ¹Anan.Du@student.uts.edu.au



TOH		FPFH		USC		KPSNet(ours)		
	prec.	recall	prec.	recall	prec.	recall	prec.	
	0.44	0.36	0.52	0.52	0.60	0.58	0.72	
	0.13	0.56	0.16	0.35	0.16	0.54	0.23	
	0.11	0.43	0.13	0.47	0.24	0.40	0.19	
	0.29	0.29	0.36	0.53	0.46	0.50	0.53	
	0.11	0.36	0.14	0.20	0.17	0.40	0.23	
	0.12	0.61	0.21	0.38	0.14	0.38	0.17	
	0.07	0.31	0.11	0.46	0.17	0.52	0.15	
	0.09	0.31	0.09	0.49	0.19	0.36	0.13	
	0.17	0.40	0.21	0.43	0.27	0.46	0.30	

Fig.2 Visualization of estimated transformations

> Joint Optimization

• we introduce the following multitask loss:

$$\mathcal{L}\left(\left\{K^{1}, K^{2}\right\}\right) = \alpha \mathcal{L}_{c}\left(F', l'\right) + \beta \mathcal{L}_{s}^{1}\left(s^{1}, l^{1}\right) + \beta \mathcal{L}_{s}^{2}\left(s^{2}, l^{2}\right)$$
(1)

$$\mathcal{L}_{c}(F',l') = \frac{\sum_{n=1}^{N} l'_{n} \left\|\mathbf{f}_{n}^{1} - \mathbf{f}_{n}^{2}\right\|^{2}}{2N_{pos}} + \frac{\sum_{n=1}^{N} (1 - l'_{n}) \max\left(0, \delta - \left\|\mathbf{f}_{n}^{1} - \mathbf{f}_{n}^{2}\right\|\right)^{2}}{2N_{neg}}$$
(2)

$$\mathcal{L}_{s}^{m}(s^{m}, l^{m}) = -\frac{\gamma \sum_{n=1}^{N} l_{n}^{m} \log s_{n}^{m} + 1}{N_{pos} + 1}$$
(3)

