

Motivation & Contributions

Motivation

- Children's exposure to violence has become a severe problem with the rapid development of Internet.
- Recognizing violent video and estimating violence extent become crucial.
- Existing researches focus on violent scene or violent action detection, lacking overall violence extent information.
- There is no dataset includes violence rating labels.

Contributions

- We build a dataset for video violent extent analysis.
- Each video is labelled with 6 objective violent labels and one subjective violence rating label.
- We propose a violence rating prediction approach.

Violent Video Dataset

- 1,930 violent video clips collected from 1,020 action movie promotion videos.
- Each video is manually annotated with 6 objective violent attributes that influence violence extent.
- We employ Trueskill pairwise comparison method to provide ground-truth violence rating for each video.

VISUAL VIOLENCE RATING WITH PAIRWISE COMPARISON

Ying Ji¹, Yu Wang², Jien Kato²

¹Nagoya University, ²Ritsumeikan University

jiying@nagoya-u.jp, {ywang, jien}@fc.ritsumei.ac.jp

Violence Rating Prediction

- Rank learning on video violence rating Learning phase

Data: $D = \{(f_i, l_i)_{i=1}^n\}; l_i = \{L_1, L_2\}$ Ordered pairs: $O = \{(f_i; f_j)\}$, if l_i Similar pairs: $S = \{(f_i; f_j)\}$, if $l_i =$ Learn w^T to make the maximum number of following constraints satisfied:

Solve w^T

$$\forall (i,j) \in 0: w^T f_i > w^T f_j$$

$$\forall (i,j) \in S: w^T f_i = w^T f_j$$

by solving the following optimization problem:

$$minimize: \left(\frac{1}{2} ||w^T||^2 + C\left(\sum \varepsilon_{ij}^2 + \sum \gamma_{ij}^2\right)\right)$$

s t $w^T f_i > w^T f_i + 1 - s_i : \forall (i, i) \in O$

$$\begin{aligned} & \left\langle \begin{array}{c} \mathcal{L} \\ & \left\langle \begin{array}{c} \mathcal{L} \\ \end{array} \right\rangle \\ s.t. & w^{T} f_{i} \geq w^{T} f_{j} + 1 - \varepsilon_{ij}; \forall (i,j) \in \mathcal{I} \\ & \left| w^{T} f_{i} - w^{T} f_{j} \right| \leq \gamma_{ij}; \forall (i,j) \in \mathcal{S} \\ & \varepsilon_{ij} \geq 0; \gamma_{ij} \geq 0 \end{aligned} \end{aligned}$$

Rating phase a. Minimum distance prediction $S_k = 1/N_k$ $L^* = argmin_L$

b. Minimum mean distance predic $F_k(w^T f_k) = \mathcal{N}(w^T f_k)$ $L^* = argmin_L$

c. Maximum Gaussian likelihood p $L^* = argmax_{L_k}$

Using two-stream network to extract features for each video

$$\{L_{2}, L_{3}\}; L_{1} < L_{2} < L_{3}$$

> l_{j}
= l_{j}

$$w^{T} f_{i}, k \in 1, 2, 3$$

$$=L_{k}$$

$$(w^{T} f^{*} - S_{k})^{2}$$

$$(\mu_{k}, \sigma_{k}), k \in 1, 2, 3$$

$$(\mu_{k}, \sigma_{k}), k \in 1, 2, 3$$

$$(w^{T} f^{*} - \mu_{k})^{2}$$
orediction
$$P(w^{T} f^{*} | \mu_{k}, \sigma_{k})^{2}$$

Experiments

- Results

		0.00	d	Feature				
ivietnoa	End-to-end		a	Pooling	Raw	L2-n	orm	SR + L2-nrom
Alexnet	Spatial		0 0 1 0/	Average	39.29%	39.84%		40.93%
	Spatial	5	9.04%	Max	40.11%	41.2	21%	38.46%
	Tomporal	Л	1.75%	Average	40.48%	41.23%		42.03%
	Тептрогаг	4		Max	42.31%	44.7	78%	42.03%
	Two stroom	Л		Average	_	_		46.70%
	TWO-Stream	4	0.4070	Max	_	45.33%		_
VGG16	Spatial	Л	J 060/	Average	45.60%	47.80%		46.98%
	Spatial	4	2.80%	Max	45.05%	45.88%		46.70%
	Temporal	Л	C 120/	Average	47.53%	49.18%		47.53%
		4	0.43%	Max	42.31%	47.80%		48.90%
	Two-stream	F	n 700/	Average	_	51.65%		_
		5	J.Z8%	Max	-	51.10%		_
Resent-50	Spatial	Л	1 720/	Average	41.48%	43.96%		48.63%
		4	4.2370	Max	42.03%	46.70%		48.08%
	Tomporal	Л	0 000/	Average	46.70%	47.53%		50.27%
	Тептрога	48.90%		Max	49.18%	49.73%		49.45%
	Two-stream		U 0 J 0/	Average	_	_		53.02%
			0.0270	Max	_	50.8	32%	_
Methods			Alexnet		VGG16		Resnet-50	
Two-stream End-to-end			46.40%		50.28%		50.82%	
Two-stream feature + SVM			46.70%		51.65%		53.02%	
Minimum distance prediction			40.38%		45.60%		49.45%	
Mean distance prediction			49.18%		53.37%		57.69%	
Maximum Gaussian likelihood			51.10%		53.85%		57.97%	

Conclusion

- We provide a novel violent video dataset with 6 objective attributes and one subject violence level.
- We propose a violence rating prediction method. It can fully utilize the pairwise relationship between different videos.

Dataset: weapon possession attribute • Training data: 1,095; Test data: 364 Network: Alexnet, VGG16, Resnet-50