

- Automated curvilinear image segmentation is a crucial step to characterize and quantify the morphology of blood vessels.
- We propose a dual pipeline RF_OFB+U-NET that fuses U-Net deep learning features with a low-level image feature filter bank using the RF classifier for vessel segmentation (arteriole and venule).
- The hybrid approach was tested on 60 Dura mater epi microscopy images and improved the segmentation of thin vessel structures by nearly 5% using the Dice similarity coefficient compared to U-Net.

DEEP U-NET REGRESSION AND HAND-CRAFTED FEATURE FUSION FOR ACCURATE BLOOD VESSEL SEGMENTATION Yasmin M. Kassim¹, O. V. Glinskii²³, V. V. Glinsky², V. H. Huxley²³, G. Guidoboni¹, K. Palaniappan¹

1 Department of EECS, 2 National Center for Gender Physiology, 3 Department of Medical Pharmacology and Physiology, University of Missouri-Columbia

PROPOSED APPROACH

Step2 (Train RF with 19 features): Train RF classifier with 18 features using convolutional filter banks (OFB) along with U-Net foreground likelihood regression map, 4-fold cross validation, each fold 30 images. • Step3 (Inference) : Use the resulted inference model to segment our 60 (40 OV + 20 OVX) epifluorescence microscopy images. • Training time is about 24 hours, testing time is 40 sec per image.

COMPARISON RESULTS

	Sens	Prec	Spec	Acc	DICE
RF	86.61	87.44	99.16	98.21	86.68
RF + pre all features	89.03	84.05	98.89	98.07	85.93
RF + pre intensity only	87.66	87.62	99.15	98.27	87.35
U-Net	78.35	89.54	99.37	97.89	83.03
U-Net optimized	89.22	85.81	98.98	98.24	86.88
RF_OFB+U-Net	89.68	86.96	99.08	98.37	88

